
Fuzzing Apache OpenOffice
An Approach to Automated Black-box Security Testing

Fuzzing Apache OpenOffice
An Approach to Automated Black-box Security Testing

Rob Weir
April 7th, 2014

1) Rob Weir from Westford Massachusetts
2) rob@robweir.com, @rcweir, http://www.linkedin.com/in/rcweir
3) PMC member on Apache OpenOffice and Incubator
4) Senior Technical Staff Member at IBM

Who is Rob?Who is Rob?

mailto:rob@robweir.com
https://twitter.com/rcweir

1) Intro
2) Fuzzing Theory
3) Previous Fuzzing with OpenOffice.org
4) Current Approach
5) Results with AOO 4.1
6) Future Opportunities
7) The End

Talk OutlineTalk Outline

● Feeding a program random data in order to induce faults.
● Black box fuzzing assumes nothing about the expectations

of the program.
● White box fuzzing knows about the underlying formats and

protocols.

What is fuzzing?What is fuzzing?

Theoretical BasisTheoretical Basis

http://upload.wikimedia.org/wikipedia/commons/f/f1/Monkey-typing.jpg

● In January 2000, with my Permutator tool, used to test the
C++ port of Apache Xalan!

● Take input XSLT, make random changes, run Xalan in a
process with custom debugger attached, catch runtime
faults, repeat.

● Same basic idea has been elaborated on over the years,
but that's essentially it.

My first fuzzingMy first fuzzing

We have a good historical
record of reducing the
number of exploitable
crashes.

Historically a strength of OpenOfficeHistorically a strength of OpenOffice

http://dankaminsky.com/2011/03/11/fuzzmark/

● Bz-attachment-extract.py (custom)
● PeachMinset (from Peach Fuzzer)
● Failure Observation Engine 2.0 (from CERT)
● VMWare/Windows 7 64-bit/AOO 4.1 Beta

ToolsetToolset

What we're looking forWhat we're looking for

void foo()
{

byte x[9];
memcpy(x,”123456789XYZ”);

}

void main(int argc, char*argv[])
{

foo();
}

Stack in main immediately before call to foo:

argc 4 bytes

argv 4 bytes

What we're looking forWhat we're looking for

void foo()
{

byte x[9];
memcpy(x,”123456789XYZ”);

}

void main(int argc, char*argv[])
{

foo();
}

Stack in foo immediately before call to memcpy:

argc 4 bytes

argv 4 bytes

@main 4 bytes

x[] 9 bytes

ret=@main 4 bytes

What we're looking forWhat we're looking for

void foo()
{

byte x[9];
memcpy(x,”123456789WXYZ”);

}

void main(int argc, char*argv[])
{

foo();
}

Stack in foo immediately after call to memcpy:

argc 4 bytes

argv 4 bytes

@main 4 bytes

x[] =123456789

ret = WXYZ

Return address
corrupted.

Ancient File FormatsAncient File Formats

Often processed like:

● Switch on record type
● Malloc the specified size
● Cast to a pointer to appropriate struct based on type
● Repeat

Very efficient... when the data is correct.

Data

Record Type

Record Length

Record Type

Record Length

Data

A Large State SpaceA Large State Space

54321 5 byte file has 256^5 ~ 10^12 ways to mutate it

But a typical document is 100KB or more in length ~ 10^2466037 combinations

We need to be smart about this or we'll be here all night!

Not a very
encouraging
dynamic.

Tests executed

D
ef

ec
ts

 f
ou

nd
What we usually see in QAWhat we usually see in QA

start

File

Print
Save

Open

Edit Tools

PPT XLS

Functionality lower in the tree is
exercised more frequently
and the defects there are found
faster.

XLS

1/3^0 = 1

1/3^1 = 1/3

1/3^2 = 1/9

1/3^3 = 1/27

● We can mutate existing documents taken from our
Bugzilla

● We have a large number of documents created over many
years in many versions of OpenOffice

● Broad feature coverage
● Emphasizes documents that are in product areas that are

currently or have been buggy. (Cockroach theory)

A Key InsightA Key Insight

bz-attachment-extractbz-attachment-extract

https://svn.apache.org/repos/asf/openoffice/devtools/bz-tools/bz-
attachment-extract.py

● Hard-coded to use the AOO instance of BZ, but should be easily
adaptable.

● “Nice”, pauses 15 seconds between each download.
● Works off a text file of issue ID's which you can easily get from

exporting a CSV from a BZ query.
● Caches the issue's XML so repeated invocations will faster if hitting

the same issue.
● But currently no check for staleness.

What did we get?What did we get?
● 9,602 total files

● 1328 doc files

● 425 ppt files

● 369 xls files

● 11,211 binary image files

● 9,602 total files

● 1328 doc files

● 425 ppt files

● 369 xls files

● 11,211 binary image files

Most were screenshots
not problem images.

● Redundancy makes this inefficient
● Do we really want to test 10,000 JPG files but only 4 SVM image

files?
● We could weight file extensions equally

● But that fails to account for different complexity of formats
● Solution is to maximize code coverage, pick the

minimum set of test files that covers the same code as
the entire set of files.

Second InsightSecond Insight

● Part of Peach Fuzzer: http://peachfuzzer.com/
● Loads each file, doing an instruction trace and then

post-processes the traces to tell you what the minimum
file set is.

● A bit temperamental. Required some duct tape
and WD40 to work with AOO. Contact me if you want
the gory details.

PeachMinSetPeachMinSet

● 225/1328 doc files = 17%
● 144/425 ppt files = 34%
● 46/369 xls files = 40%
● 234/11,211 binary image files = 2%

Total 649 of 13,333 = 5%, so overall a 20x improvement

Minset ResultsMinset Results

● Windows Fuzzing Framework from CERT
● http://www.cert.org/vulnerability-analysis/tools/foe.cfm
● A sister project for Linux, Basic Fuzzing Framework (BFF) is

also available: http://www.cert.org/vulnerability-
analysis/tools/bff.cfm

Failure Observation EngineFailure Observation Engine

http://www.cert.org/vulnerability-analysis/tools/foe.cfm

● Take a seedfile and appply specified fuzzer to it
● Pass fuzzed file to AOO command line
● If a fault is detect then hook in debugger

● If crash is dupe then skip, else:
● Pass crash details onto Microsoft's !exploitable to

classify the crash
● Write out crash dump plus the fuzzed and original file
● Optionally, try to “minimize” the fuzzed file to create a

minimal test case.
● FOE learns which files and fuzzing parameters lead to the

most crashes.

Basic FOE WorkflowBasic FOE Workflow

● 4 VMs ran for 1 week
● ~10 tests/minute for each VM
● 4*10*7*24*60 = ~ 400K tests
● Many crashes, over 70 classified as EXPLOITABLE by !exploitable.
● But only 4 root causes, which are fixed in the 4.1 GA release.

AOO 4.1 Beta ResultsAOO 4.1 Beta Results

I can provide more detail in Denver on the actual fuzzing
results if AOO 4.1 is released by then.

● Fuzzing is only one approach, but is not a silver bullet.
● Static analysis, e.g., Coverity is another, complementary, tool.

● We might also consider retiring some of the rarely used binary
formats to reduce exposure, or at least make them optional at
install time.

One Approach of ManyOne Approach of Many

Time Permitting: Random ObservationsTime Permitting: Random Observations

I assume this all makes sense to
developers. But to users?

Fuzzing a Raster ImageFuzzing a Raster Image

It is like
shooting a
jellyfish!

Header info

● Most random mutations of XML files cause the file to
be rejected. We need to be clever to induce faults in
processing of ODF and OOXML, e.g.:

● Replace numeric attribute values with 0, -1, 1, 2^16-1, -2^16, NaN,
INF, -INF

● Replace string attribute values with “”, “ “, a large string (16K)
● Interchange xml:id and idref's
● Interchange two subtrees
● Replace character data
● Schema-directed fuzzing?

Fuzzing XMLFuzzing XML

● Idea is to increase test execution rate
● Focus on parsing code, not layout code
● But maybe faults are in layout code also?
● Possibilities for unit-level fuzzing as well

Headless ExecutionHeadless Execution

The EndThe End

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

