
Hacking Lucene for
Custom Search Results

Doug Turnbull

OpenSource Connections

OpenSource Connections

Hello

Me

@softwaredoug

dturnbull@o19s.com

Us

http://o19s.com

- Trusted Advisors in Search, Discovery &

Analytics

OpenSource Connections

mailto:dturnbull@o19s.com
http://o19s.com/

Tough Search Problems

• We have demanding users!

OpenSource Connections

Switch these two!

Tough Search Problems

• Demanding users!

OpenSource Connections

WRONG!

Make search do
what is in my head!

Tough Search Problems

• Our Eternal Problem:

o Customers don’t care about the technology

field of Information Retrieval: they just want

results

o BUT we are constrained by the tech!

OpenSource Connections

This is how
a search
engine
works!

In one ear Out the other

/dev/null

Satisfying User Expectations

• Easy: The Search Relevancy Game:

o Solr/Elasticsearch query operations (boosts, etc)

o Analysis of query/index to enhance matching

• Medium: Forget this, lets write some Java

o Solr/Elasticsearch query parsers. Reuse existing Lucene

Queries to get closer to user needs

OpenSource Connections

That Still Didn’t Work

• Look at him, he’s angrier than ever!

• For the toughest problems, we’ve made

search complex and brittle

• WHACK-A-MOLE:

o Fix one problem, cause another

o We give up,

OpenSource Connections

Next Level

• Hard: Custom Lucene Scoring – implement a query

and scorer to explicitly control matching and

scoring

OpenSource Connections

This is the Nuclear Option!

Shameless Plug

• How do we know if we’re making progress?

OpenSource Connections

• Quepid! – our search test driven workbench

Lucene Lets Review

• At some point we wrote a Lucene index to a

directory

• Boilerplate (open up the index):

OpenSource Connections

Directory d = new RAMDirectory();
IndexReader ir = DirectoryReader.open(d);
IndexSearcher is = new IndexSearcher(ir);

Boilerplate setup of:
• Directory Lucene’s handle to

the FS
• IndexReader – Access to

Lucene’s data structures
• IndexSearcher – use index

searcher to perform search

Lucene Lets Review

• Queries:

• Queries That Combine Queries

OpenSource Connections

Make a Query and Search!
• TermQuery: basic term

search for a field

Term termToFind = new Term("tag", "space");
TermQuery spaceQ = new TermQuery(termToFind);
termToFind = new Term("tag", "star-trek");
TermQuery starTrekQ = new TermQuery(termToFind);

BooleanQuery bq = new BooleanQuery();
BooleanClause bClause = new BooleanClause(spaceQ, Occur.MUST);
BooleanClause bClause2 = new BooleanClause(starTrekQ, Occur.SHOULD);
bq.add(bClause);
bq.add(bClause2);

Lucene Lets Review

• Query responsible for specifying search behavior

• Both:

o Matching – what documents to include in the results

o Scoring – how relevant is a result to the query by assigning

a score

OpenSource Connections

Lucene Queries, 30,000 ft view

OpenSource Connections

LuceneQuery

IndexReader

Find
next

Match

IndexSearcher

Aka, “not really accurate, but what to tell your boss to not confuse them”

Next Match Plz

Here ya go

Score That Plz

Calc.
score

Score of last doc

First Stop CustomScoreQuery

• Wrap a query but override its score

OpenSource Connections

CustomScoreQuery

LuceneQuery

Find
next

Match

Calc.
score

CustomScoreProvider

Rescore doc

New Score

Next Match Plz

Here ya go

Score That Plz

Score of last doc

Result:
- Matching Behavior unchanged
- Scoring completely overriden

A chance to reorder results of a Lucene
Query by tweaking scoring

How to use?

• Use a normal Lucene query for matching

 Term t = new Term("tag", "star-trek");

 TermQuery tq = new TermQuery(t);

• Create & Use a CustomQueryScorer for scoring that

wraps the Lucene query

 CountingQuery ct = new CountingQuery(tq);

OpenSource Connections

Implementation

• Extend CustomScoreQuery, provide a

CustomScoreProvider

OpenSource Connections

protected CustomScoreProvider getCustomScoreProvider(
 AtomicReaderContext context) throws IOException {
 return new CountingQueryScoreProvider("tag", context);
}

(boilerplate omitted)

Implementation

• CustomScoreProvider rescores each doc with

IndexReader & docId

OpenSource Connections

// Give all docs a score of 1.0
public float customScore(int doc, float subQueryScore, float
valSrcScores[]) throws IOException {

return (float)(1.0f); // New Score
}

Implementation

• Example: Sort by number of terms in a field

OpenSource Connections

// Rescores by counting the number of terms in the field
public float customScore(int doc, float subQueryScore, float
valSrcScores[]) throws IOException {

IndexReader r = context.reader();
Terms tv = r.getTermVector(doc, _field);
TermsEnum termsEnum = null;
termsEnum = tv.iterator(termsEnum);
int numTerms = 0;
while((termsEnum.next()) != null) {
 numTerms++;
}
return (float)(numTerms); // New Score

}

CustomScoreQuery, Takeaway

• SIMPLE!

o Relatively few gotchas or bells & whistles (we will see lots of

gotchas)

• Limited

o No tight control on what matches

• If this satisfies your requirements: You should get off

the train here

OpenSource Connections

Lucene Circle Back

• I care about overriding scoring

o CustomScoreQuery

• I need to control custom scoring and matching

o Custom Lucene Queries!

OpenSource Connections

Example – Backwards Query

• Search for terms backwards!

o Instead of banana, lets create a query that finds ananab

matches and scores the document (5.0)

o But lets also match forward terms (banana), but with a

lower score (1.0)

• Disclaimer: its probably possible to do this with

easier means!

https://github.com/o19s/lucene-query-example/

OpenSource Connections

https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/

Lucene Queries, 30,000 ft view

OpenSource Connections

LuceneQuery

IndexReader

Find
next

Match

IndexSearcher

Aka, “not really accurate, but what to tell your boss to not confuse them”

Next Match Plz

Here ya go

Score That Plz

Calc.
score

Score of last doc

Anatomy of Lucene Query

OpenSource Connections

LuceneQuery

Weight

Scorer

A Tale Of Three Classes:

• Queries Create Weights:

• Query-level stats for this
search

• Think “IDF” when you
hear weights

• Weights Create Scorers:
• Heavy Lifting, reports

matches and returns a
score

Weight & Scorer are inner classes of Query

Next Match Plz

Here ya go

Score That Plz

Score of last doc

Find
next

Match

Calc.
score

IndexReader

IndexSearcher

Backwards Query Outline

OpenSource Connections

class BacwkardsQuery {

 class BackwardsScorer {
 // matching & scoring functionality
 }

 class BackwardsWeight {
 // query normalization and other “global” stats

public Scorer scorer(AtomicReaderContext context, …)
 }

 public Weight createWeight(IndexSearcher)

}

How are these used?

OpenSource Connections

Query q = new BackwardsQuery();
idxSearcher.search(q);

This Setup Happens:

When you do:

Weight w = q.createWeight(idxSearcher);
normalize(w);
foreach IndexReader idxReader:
 Scorer s = w.scorer(idxReader);

Important to know how Lucene is calling your code

Weight

OpenSource Connections

Weight w = q.createWeight(idxSearcher);
normalize(w);

What should we do with our weight?

IndexSearcher Level Stats
- Notice we pass the IndexSearcher when we create the weight

- Weight tracks IndexSearcher level statistics used for scoring

Query Normalization
- Weight also participates in query normalization

Remember – its your Weight! Weight can be a no-op and just create searchers

Weight & Query Normalization

OpenSource Connections

Query Normalization – an optional little ritual to take your Weight
instance through:

float v = weight.getValueForNormalization();
float norm = getSimilarity().queryNorm(v);
weight.normalize(norm, 1.0f);

What I think my weight is

Normalize that weight
against global statistics

Pass back the normalized stats

Weight & Query Normalization

• For TermQuery:

o The result of all this ceremony is the IDF (inverse document

frequency of the term).

• This code is fairly abstract

o All three steps are pluggable, and can be totally ignored

OpenSource Connections

float v = weight.getValueForNormalization();
float norm = getSimilarity().queryNorm(v);
weight.normalize(norm, 1.0f);

BackwardsWeight

• Custom Weight that completely ignores query

normalization:

OpenSource Connections

@Override
public float getValueForNormalization() throws IOException {
 return 0.0f;
}

@Override
public void normalize(float norm, float topLevelBoost) {
 // no-op
}

Weights make Scorers!

• Scorers Have Two Jobs:

o Match! – iterator interface over matching results

o Score! – score the current match

OpenSource Connections

@Override
public Scorer scorer(AtomicReaderContext context, boolean
scoreDocsInOrder, boolean topScorer, Bits acceptDocs) throws
IOException {

 return new BackwardsScorer(...);
}

Scorer as an iterator

• Inherits the following from

DocsEnum:

• nextDoc()

o Next match

• advance(int docId) –

o Seek to the specified docId

• docID()

o Id of the current document we’re on

OpenSource Connections

DocsEnum

Scorer

DocIdSetIterator

In other words…

• Remember THIS?

OpenSource Connections

LuceneQuery

IndexReader

Find
next

Match

IndexSearcher

Next Match Plz

Here ya go

Score That Plz

Calc.
score

Score of curr doc

LuceneQuery LuceneScorer

…Actually…

nextDoc()

score()

Scorer == Engine of the Query

What would nextDoc look like

• Remember search is an inverted index

o Much like a book index

o Fields -> Terms -> Documents!

OpenSource Connections

IndexReader == our handle to inverted index:

• Much like an index. Given term, return list

of doc ids
• TermsEnum:

• Enumeration of terms (actual logical
index of terms)

• DocsEnum
• Enum. of corresponding docIDs (like

list of pages next to term)

What would nextDoc look like?

OpenSource Connections

IndexReader

Find
next

Match

Calc.
score

LuceneScorer final TermsEnum termsEnum =
 reader.terms(term.field()).iterator(null);
termsEnum.seekExact(term.bytes(), state);

• TermsEnum to lookup info for a Term:

DocsEnum docs = termsEnum.docs(acceptDocs, null);

• Each term has a DocsEnum that lists the

docs that contain this term:

What would nextDoc look like?

OpenSource Connections

IndexReader

Find
next

Match

Calc.
score

LuceneScorer

 @Override
 public int nextDoc() throws IOException {
 return docs.nextDoc();
 }

• Wrapping this enum, now I can return matches

for this term!

• You’ve just implemented TermQuery!

BackwardsScorer nextDoc

• Later, when creating a Scorer. Get a handle to
DocsEnum for our backwards term:

OpenSource Connections

public Scorer scorer(AtomicReaderContext context, boolean scoreDocsInOrder,
 boolean topScorer, Bits acceptDocs) throws IOException {

 Term bwdsTerm = BackwardsQuery.this.backwardsTerm;
 TermsEnum bwdsTerms = context.reader().terms(bwdsTerm.field()).iterator(null);
 bwdsTerms.seekExact(bwdsTerm.bytes());
 DocsEnum bwdsDocs = bwdsTerms.docs(acceptDocs, null);

• Recall our Query has a Backwards Term (ananab):
public BackwardsQuery(String field, String term) {
 backwardsTerm = new Term(field, new StringBuilder(term).reverse().toString());
 ...
}

Terrifying and verbose Lucene speak for:
1. Seek to term in field via TermsEnum
2. Give me a DocsEnum of matching docs

BackwardsScorer nextDoc

• Our scorer has bwdDocs and fwdDocs, our nextDoc

just walks both:

OpenSource Connections

@Override
public int nextDoc() throws IOException {

int currDocId = docID();
// increment one or both
if (currDocId == backwardsScorer.docID()) {
 backwardsScorer.nextDoc();
}
if (currDocId == forwardsScorer.docID()) {
 forwardsScorer.nextDoc();
}
return docID();

}

Scorer for scores!

• Score is easy! Implement score,
do whatever you want!

OpenSource Connections

IndexReader

Find
next

Match

Calc.
score

LuceneScorer @Override
public float score() throws
IOException {
 return 1.0f;
}

We call docID() in nextDoc()

BackwardsScorer Score
• Recall, match a backwards term (ananab)score =

5.0, fwd term (banana) score = 1.0

• We hook into docID, update score based on

current posn

OpenSource Connections

@Override
public int docID() {
 int backwordsDocId = backwardsScorer.docID();
 int forwardsDocId = forwardsScorer.docID();
 if (backwordsDocId <= forwardsDocId && backwordsDocId != NO_MORE_DOCS) {
 currScore = BACKWARDS_SCORE;
 return backwordsDocId;
 } else if (forwardsDocId != NO_MORE_DOCS) {
 currScore = FORWARDS_SCORE;
 return forwardsDocId;
 }
 return NO_MORE_DOCS;
}

Currently positioned on a
bwds doc, set currScore to 5.0

Currently positioned on a fwd
doc, set currScore to 1.0

BackwardsScorer Score

• For completeness sake, here’s our

score:

OpenSource Connections

@Override
public float score() throws
IOException {
 return currScore;
}

IndexReader

Find
next

Match

Calc.
score

LuceneScorer

So many gotchas!

• Ultimate POWER! But You will have weird bugs:

o Do all of your searches return the results of your first query?
• In Query Implement hashCode and equals

o Weird/Random Test Failures
• Test using LuceneTestCase to ferret out common Lucene bugs

o Randomized testing w/ different codecs etc

o IndexReader methods have a certain ritual and very specific

rules, (enums must be primed, etc)

OpenSource Connections

Extras

• Query rewrite method

o Optional, recognize you are a complex query, turn yourself

into a simpler one
• BooleanQuery with 1 clause -> return just one clause

• Weight has optional explain

o Useful for debugging in Solr

o Pretty straight-forward API

OpenSource Connections

Conclusions!

• These are nuclear options!

o You can achieve SO MUCH before

you get here (at much less
complexity)

o There’s certainly a way to do what

you’ve seen without this level of

control

• Fun way to learn about Lucene!

OpenSource Connections

QUESTIONS?

OpenSource Connections

