Hacking Lucene for
Custom Search Results

Doug Turnbull
% @ m @ OpenSource Connections

OpenSource Connections @

Hello

Me
@softwaredoug
diurnbull@o19s.com

Us
hitp://019s.com

- Trusted Advisors in Search, Discovry &
Analytics

Y OpenSource Connections ® 5

mailto:dturnbull@o19s.com
http://o19s.com/

Tough Search Problems

« We have demanding users!

Patent - ID Published
Cat cage door safety switch CN202222241U May 23, 2012
Active cat eye CN238304T7Y Jun 21, 2000
L - o
., Q
RN .)
el N\ Two a door of cat eye CN202202765U Apr 25,2012
4
. A cat sand groove CH202014496U Oct 26, 2011
Switch these two!
Cat special charging basket CN101000845A Mar 30, 2011
The cat handheld cartridge CN101965804A Feb 9, 2011
Cat special charging basket CN201718305U Jan 26, 2011

o OpenSource Connections ®

Tough Search Problems

« Demanding users!

Patent =

A pedal shopping cart

A portable cart

. = -
o, Q
) _Qf, ~ Supermarket using a shopping cart handle
RN with billboard
J

WRONG!

With the trolley of the steering device

Make search do
1Q 1 Displaying shopping cart for commodity
what is in my head! Dispiaying shopping ca .

A workpiece cart for drying room box

The vehicle cart device

1D

CN202186472U

CN201494478U

CN201011609Y

CN101648572A

CN10239041T7A

CN202243588U

CN202057194U

CN102452403A

Published

Apri1, 2012

Jun 22010

Jan 23. 2008

Feb 17, 2010

Mar 28 2012

May 30, 2012

MNov 30, 2011

May 16, 2012

o OpenSource Connections ®

Tough Search Problems

« Qur Eternal Problem:

In one ear Out the other
This is how ’ N
a search ‘ - X
engine
works!

/dev/null

o Customers don't care about the technology
field of Information Reftrieval: they just want
results

o BUT we are constrained by the tech!

[@

® OpenSource Connections ® w |

Satisfying User Expectations

 Easy: The Search Relevancy Game:
o Solr/Elasticsearch query operations (boosts, etc)
o Analysis of query/index to enhance matching

« Medium: Forget this, lets write some Java

o Solr/Elasticsearch query parsers. Reuse existing Lucene
Queries to get closer to user needs

. .
OpenSource Connections @ w |

That Still Didn’t Work

F « Look at him, he's angrier than everl!

‘\&‘\S « For the tfoughest problems, we've made
’ search complex and brittle

- WHACK-A-MOLE:

o Fix one problem, cause another
o We give up,

f OpenSource Connections @ G

Next Level

 Hard: Custom Lucene Scoring — implement a query
and scorer to explicitly control matching and
scoring

This is the Nuclear Option!

o OpenSource Connections ®

Shameless Plug

 How do we know if we're making progresse

&« C | [quepid.com/#/case/69/try/0 [T "g. OOk 9 B =

Quepid! — our search test driven workbench

[@

OpenSource Connections @ w |

Lucene Lets Review

« Af some point we wrote a Lucene index to @
directory

» Bollerplate (open up the index):

Boilerplate setup of:

 Directory Lucene’s handle to
the FS

 IndexReader — Access to
Lucene’s data structures

* IndexSearcher — use index
searcher to perform search

Directory d = new RAMDirectory();
IndexReader ir = DirectoryReader.open(d);
IndexSearcher is = new IndexSearcher(ir);

o OpenSource Connections ®

Lucene Lets Review

e Queries:

Make a Query and Search! Term termToFind = new Term("tag", "space");
« TermQuery: basicterm TermQuery spaceQ = new TermQuery(termToFind);
search for a field termToFind = new Term("tag", "star-trek");
TermQuery starTrekQ = new TermQuery(termToFind);

 Queries That Combine Queries

BooleanQuery bg = new BooleanQuery();

BooleanClause bClause = new BooleanClause(spaceQ, Occur.MUST);
BooleanClause bClause2 = new BooleanClause(starTrekQ, Occur.SHOULD);
bg.add(bClause);

bg.add(bClause2);

o OpenSource Connections @

Lucene Lets Review

* Query responsible for specitying search behavior
* Both:

o Matching — what documents to include in the results

o Scoring — how relevant is a result to the query by assigning
a score

. .
OpenSource Connections @ w |

Lucene Queries, 30,000 ft view

Aka, “not really accurate, but what to tell your boss to not confuse them”

Next Match Plz
Here ya go
LuceneQuery Score That Plz IndexSearcher

Score of last doc

Find Calc.
Xt score
Match

IndexReader

® OpenSource Connections ®

S

First Stop CustomScoreQuery

 Wrap a query but override its score

Rescore doc Next Match Plz
Here ya go
: >
@IE ko BT0uTe Sl New Score CustomScoreQuery Score That Plz

Score of last doc

Result:

- Matching Behavior unchanged
- Scoring completely overriden

LuceneQuery

A chance to reorder results of a Lucene
Query by tweaking scoring

°
OpenSource Connections D

How to use?

* Use a normal Lucene query for matching
Term t = new Term("tag", "star-trek");

TermQuery tg = new TermQuery(t);

 Create & Use a CustomQueryScorer for scoring that
wraps the Lucene query

CountingQuery ct = new CountingQuery(tq);

° i °
OpenSource Connections w |

Implementation

« Extend CustomScoreQuery, provide @
CustomScoreProvider

protected CustomScoreProvider getCustomScoreProvider(
AtomicReaderContext context) throws IOException {
return new CountingQueryScoreProvider("tag", context);

(boilerplate omitted)

o OpenSource Connections ®

Implementation

« CustomScoreProvider rescores each doc with
IndexReader & docld

// Give all docs a score of 1.0
public float customScore(int doc, float subQueryScore, float
valSrcScores[]) throws IOException {
return (float)(1.0f); // New Score
}

i °
OpenSource Connections w |

Implementation

 Example: Sort by number of terms in a field

// Rescores by counting the number of terms in the field
public float customScore(int doc, float subQueryScore, float
valSrcScores[]) throws IOException {

IndexReader r = context.reader();

Terms tv = r.getTermVector(doc, field);

TermsEnum termsEnum = null;

termsEnum = tv.iterator(termsEnum);

int numTerms = O;

while((termsEnum.next()) != null) {

numTerms++;

}

return (float)(numTerms); // New Score

o OpenSource Connections ®

CustomScoreQuery, Takeaway

* SIMPLE!

o Relatively few gotchas or bells & whistles (we will see lots of
gotchas)

* Limited
o No tight control on what matches

 |f this satisfies your requirements: You should get off
the train here

o OpenSource Connections ®

i

Lucene Circle Back

» | care about overriding scoring
o CustomScoreQuery

* | need to control custom scoring and matching
o Custom Lucene Queries!

. ' &
o OpenSource Connections @ w |

Example - Backwards Query

« Search for terms backwards!

o Instead of banana, lets create a query that finds ananab
matches and scores the document (5.0)

o But lets also match forward terms (banana), but with a
lower score (1.0)

« Disclaimer: its probably possible to do this with
easier means!

https://aithub.com/o19s/lucene-query-example/

o OpenSource Connections @

' @
W

https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/
https://github.com/o19s/lucene-query-example/

Lucene Queries, 30,000 ft view

Aka, “not really accurate, but what to tell your boss to not confuse them”

Next Match Plz
Here ya go
LuceneQuery Score That Plz IndexSearcher

Score of last doc

Find Calc.
Xt score
Match

IndexReader

® OpenSource Connections ®

S

Anatomy of Lucene Query

A Tale Of Three Classes: LuceneQuery
Next Match P1

* Queries Create Weights:
* Query-level stats for this
search

* Think “IDF” when you
hear weights

Weight Here ya go
Score That Plz

Score of last doc

» Weights Create Scorers:
* Heavy Lifting, reports
matches and returns a
score

Weight & Scorer are inner classes of Query

Fiélc}(Calc.
nex
score
Match P

° i i OienSource Connections ® >y

Backwards Query Outline

class BacwkardsQuery {

class BackwardsScorer {
// matching & scoring functionality

}

class BackwardsWeight {
// query normalization and other “global” stats

public Scorer scorer(AtomicReaderContext context, ..)

public Weight createWeight(IndexSearcher)

ol

[OpenSource Connections ®
=l

How are these used?

When you do:

Query g = new BackwardsQuery();
idxSearcher.search(q);

This Setup Happens:

Weight w = g.createWeight(idxSearcher);
normalize(w);
foreach IndexReader idxReader:

Scorer s = w.scorer(idxReader);

Important to know how Lucene is calling your code

OpenSource Connections @

a4

il

Weight

What should we do with our weight?

Weight w = q.createWeight(idxSearcher);
normalize(w);

IndexSearcher Level Stats
- Notice we pass the IndexSearcher when we create the weight
- Weight tracks IndexSearcher level statistics used for scoring

Query Normalization
- Weight also participates in query normalization

Remember — its your Weight! Weight can be a no-op and just create searchers

a4

® OpenSource Connections @
=l

Weight & Query Normalization

Query Normalization — an optional little ritual to take your Weight
instance through:

What I think my weight is

float v = weight.getValueForNormalization();
float norm = getSimilarity().queryNorm(v);
weight.normalize(norm, 1.0f);

Normalize that weight

against global statistics

Pass back the normalized stats

® OpenSource Connections @

' @
7

Weight & Query Normalization

float v = weight.getValueForNormalization();
float norm = getSimilarity().queryNorm(v);
weight.normalize(norm, 1.0f);

* For TermQuery:

o The result of all this ceremony is the IDF (inverse document
frequency of the term).

« This code is fairly abstract
o All three steps are pluggable, and can be totally ignored

o OpenSource Connections ®

BackwardsWeight

« Custom Weight that completely ignores query
normalization:

@Override

public float getValueForNormalization() throws IOException {
return 0.0f;
}

@Override
public void normalize(float norm, float toplLevelBoost) {

// no-op
}

OpenSource Connections ®

Weights make Scorers!

@Override

public Scorer scorer(AtomicReaderContext context, boolean
scoreDocsInOrder, boolean topScorer, Bits acceptDocs) throws
IOException {

return new BackwardsScorer(...);

« Scorers Have Two Jobs:
o Match! - iterator interface over matching results
o Score!l —score the current match

o OpenSource Connections ®

Scorer as an iterator

Inherits the following from
DocsEnum:

DocldSetlterator

« nexiDoc()
o Next match

DocsEnum

« advance(int doclid) -
Scorer o Seek to the specified docld

« docliD()

o |Id of the current document we're on

Y OpenSource Connections ® 5

In other words...

« Remember THIS¢e .Actually...

NextMxtBoe(y
Here ya go
LuceneScorer Score EhatdP IndexSearcher

Score of curr doc

Find Calc.
et score
Match Scorer == Engine of the Query

IndexReader

Y OpenSource Connections ® 5

What would nexiDoc look like

« Remember search is an inverted in

o Much like a book index
o Fields -> Terms -> Documents!

Symons, A. J. A, 18

Temple, The, 29
Thorp, Joseph, 20, 21, 31, 33
Ravilious, Eric, 20 Traveller’s Library, 37
Ricketts, Charles, 16, 1! Tributes to Edward Johuston, 22n.
Ridler, Viviar Tschichold, Jan, 38, 40
Type-faces, New, 28, 34, 36

) fains, Typography (Eric Gill), 34
Royal College of Art, 23 Typography (Journal), 39

IndexReader == our handle to inverted index: Ruskin,Joim, 9, 1 ol

Rutherston, Albert, 32, 34

Secker, Messrs Martin, 37 Vale Press, 16
Shakespeare, One-volume edition, 31 ; :
P >" Warde, Beatrice, 21, 28

 Much like an index. Given term, return list Shakespeare Head Press, 30,31 e s

1 gglzd'gnff}{ﬁd 12, 13, 14 Warner, Philip Lee, 36
Of dOC ldS Sh;n\:alf’rcss ;9 ot Week-End Book, The, 29

Signature, 39 Westminster Press, 21, 39

* TermsEnum: Signficnt Prodof ur Prining A, ggﬁﬂz{{:‘;‘y” 18
* Enumeration of terms (actual logical Simon. Herhert and Oliver 21 25 Wilde, Oscar, 18
index of terms)
* DocsEnum
* Enum. of corresponding doclIDs (like

list of pages next to term)

o OpenSource Connections ®

What would nextDoc look like?

« TermsEnum to lookup info for a Term:

final TermsEnum termsEnum = LuceneScorer
reader.terms(term.field()).iterator(null);
termsEnum.seekExact(term.bytes(), state);

Find

Calc.

. At N DocsE that lists th Nt | score
Eac erm Nnas d bocsenum art lISTS e Match

docs that contain this term:

DocsEnum docs = termsEnum.docs(acceptDocs, null);

IndexReader

' @

® OpenSource Connections @

What would nextDoc look like?

Wrapping this enum, now | can return matches
for this term!

@Override

public int nextDoc() throws IOException {
return docs.nextDoc();

}

You've just implemented TermQuery!

LuceneScorer

Find Calc.
next score
Match

IndexReader

OpenSource Connections ® 5

BackwardsScorer nexiDoc

Recall our Query has a Backwards Term (ananab):

public BackwardsQuery(String field, String term) {
backwardsTerm = new Term(field, new StringBuilder(term).reverse().toString());

Later, when creating a Scorer. Get a handle to
DocsEnum for our backwards term:

public Scorer scorer(AtomicReaderContext context, boolean scoreDocsInOrder,
boolean topScorer, Bits acceptDocs) throws IOException {

Term bwdsTerm = BackwardsQuery.this.backwardsTerm;

TermsEnum bwdsTerms = context.reader().terms(bwdsTerm.field()).iterator(null);
bwdsTerms.seekExact(bwdsTerm.bytes());

DocsEnum bwdsDocs = bwdsTerms.docs(acceptDocs, null);

l_ Terrifying and verbose Lucene speak for:
1. Seek to term in field via TermsEnum

2. Give me a DocsEnum of matching docs

[@

® OpenSource Connections @ w |

BackwardsScorer nexiDoc

 Qur scorer has bwdDocs and fwdDocs, our nextDoc
just walks both:

@Override
public int nextDoc() throws IOException {
int currDocId = docID();
// increment one or both
if (currDocld == backwardsScorer.docID()) {
backwardsScorer.nextDoc();

}

if (currDocId == forwardsScorer.docID()) {
forwardsScorer.nextDoc();

¥

return docID();

o OpenSource Connections @

Scorer for scores!

« Score is easy!l Implement score,
do whatever you want!

yernide LuceneScorer

public float score() throws

IOException {
return 1.0f;

} Find Calc.
next score
Match

IndexReader

OpenSource Connections ® 5

BackwardsScorer Score

« Recall, match a backwards term (ananab)score =
5.0, fwd term (banana) score = 1.0

« We hook into doclID, update score based on
current posn

We call docID() in nextDoc()

@Override
public int docID()
int backwordsDocId = backwardsScorer.docID();
int forwardsDocId = forwardsScorer.docID();
if (backwordsDocId <= forwardsDocId && backwordsDocId != NO_MORE_DOCS) {
currScore = BACKWARDS SCORE;
return backwordsDocId;
} else if (forwardsDocId != NO_MORE_DOCS) {
currScore = FORWARDS SCORE;
return forwardsDocId;

Currently positioned on a
bwds doc, set currScore to 5.0

} "
return NO_MORE_DOCS; Currently positioned on a fwd

} doc, set currScore to 1.0

® OpenSource Connections ® w |

BackwardsScorer Score

For completeness sake, here’s our
score:

@Override

public float score() throws
IOException {

}

return currScore;

LuceneScorer

Find Calc.
hiZEﬁt score

IndexReader

OpenSource Connections ® 5

So many gotchas!

« Ultimate POWER! But You will have weird bugs:

o Do all of your searches return the results of your first query?
* In Query Implement hashCode and equals

o Weird/Random Test Failures
« Test using LuceneTestCase to ferret out common Lucene bugs
o Randomized testing w/ different codecs etc

o IndexReader methods have a certain ritual and very specific
rules, (enums must be primed, etc)

o OpenSource Connections @

' @
W

Exiras

« Query rewrite method

o Optional, recognize you are a complex query, turn yourself

into a simpler one
« BooleanQuery with 1 clause -> return just one clause

 Weight has optional explain
o Useful for debugging in Solr
o Pretty straight-forward API

[@

® OpenSource Connections ® w |

Conclusions!

 These are nuclear opftions!

o You can achieve SO MUCH before
you get here (at much less
complexity)

o There's certainly a way to do what
you've seen without this level of
control

 Fun way to learn about Lucenel

° i °
OpenSource Connections w |

QUESTIONS?

OpenSource Connections ®

