
Improving performance for 
security enabled web 
services

Improving performance for 
security enabled web 
services
 - Dr. Colm Ó hÉigeartaigh - Dr. Colm Ó hÉigeartaigh



Agenda

• Introduction to Apache CXF
• WS-Security in CXF 3.0.0
• Securing Attachments in CXF 3.0.0
• RS-Security in CXF 3.0.0
• Some empirical data
• Using Single Sign-On (SSO)



Speaker Introduction

Apache CXF

Apache Santuario
Apache Webservices

Apache Syncope



Introduction to Apache CXFIntroduction to Apache CXF



Apache CXF

• One of the leading web service frameworks.
• Supports JAX-WS and JAX-RS frontend APIs
• Protocols: SOAP, XML/HTTP, RESTful HTTP, CORBA, etc.
• Transports: HTTP, JMS, JBI, etc.
• Comprehensive WS standards support.
• Security Services: STS, XKMS, Fediz.
• Strong OSGi support.



Apache CXF Stats

• Founded in 2006 as a merger of Celtix + XFire.
• Apache TLP releases go from 2.0.6 to the current 2.7.10 / 

3.0.0-milestone2.
• 33 committers, 22 of whom are PMC members.
• Embedded in other Apache projects such as Apache 

Syncope, Apache Camel, Apache TomEE+.
• Used in industry products such as JBoss Web Services, 

Jboss Fuse, Talend ESB, etc.



JAX-WS

• A service is typically defined by a WSDL document
• Java code generated by “WSDL2Java” functionality
• Alternatively, can start with code + use annotations
• Typically a SOAP binding is used over HTTP
• SOAP Body contains service payload
• SOAP Header contains service metadata



SOAP Envelope



JAX-RS

• Web Services using Representational State Transfer (REST) 
paradigm. 

• Can use WADL to define the service, but typically code + 
annotations are used

• Messages can be marshalled/unmarshalled to/from Java 
Objects using JAXB

• Messages in XML/JSON format.



Annotations Example



WS-Security in CXF 3.0.0WS-Security in CXF 3.0.0



WS-Security

• A set of OASIS specifications to secure SOAP Messages
• Message Confidentiality (XML Encryption)
• Message Integrity (XML Signature)
• Client Authentication via tokens (Username Tokens, 

Kerberos Tokens, SAML Tokens, Asymmetric Signature 
Certificates/Public Keys).



Secured SOAP Envelope



WS-SecurityPolicy

• WS-SecurityPolicy can be used to configure WS-Security via 
a WS-Policy expression.

• By embedding the policy in a WSDL, a service can publish 
security requirements to a client

• Client/Service only need to configure usernames, 
passwords, keys, etc.

• Requests are validated against the set of applicable 
policies



Example



WS-Security @ Apache

• Apache Santuario: XML Signature + XML Encryption
• Apache WSS4J: WS-Security layer built on top of Santuario
• Apache CXF / Apache Axis/Rampart: Web Services stacks 

that include WSS4J – WS-SecurityPolicy support, 
WS-Trust, WS-SecureConveration, etc.



A familiar problem...

Small Msg Large Msg
0

10

20

30

40

50

60

70

80

Plaintext

Signed + Encrypted

T
im

e
 p

e
r 

1
0

0
0

 r
e

q
u

e
st

s 
(s

)



Security is Expensive

• There is a large performance penalty associated with using 
WS-Security.

• This is partly due to the work involved in signing and 
encrypting (in particular using XML).

• However, a large reason is due to the fact that up to now, 
WS-Security processing requires DOM.

• This requires a lot of memory for large requests
• Also, a StAX-enabled stack such as CXF needs to convert 

the request into DOM



Streaming WS-Security

• A WS-Security implementation based on StAX would solve 
the problem of large memory requirements and having 
to convert to DOM.

• However, there are huge difficulties with porting things like 
XML canonicalization to use a streaming approach.

• 2011: Problem solved by Marc Giger donating his SWSSF 
project to Apache, a streaming WS-Security prototype 
based on WSS4J.



SWSSF @ Apache

• Rather than create a new project, SWSSF has been 
integrated into the existing projects.

• The XML Signature + Encryption parts have been added to 
Apache Santuario 2.0.0.

• The WS-Security parts have been added to Apache WSS4J 
2.0.0.

• WSS4J now has two WS-Security stacks, one based on DOM 
and one on StAX.



CXF Integration

• The new StAX code is fully integrated into CXF
• It uses the exact same configuration as for the DOM code
• New interceptors: WSS4JStax(Out|In)Interceptor
• Works with WS-SecurityPolicy - StAX functionality enabled 

by a boolean configuration property 
(“ws-security.enable.streaming)

• DOM functionality is enabled by default for 
WS-SecurityPolicy



Real-time validation

• Apache CXF parses the set of WSS4J results + evaluates 
the set of applicable WS-SecurityPolicy policies against 
them.

• The new StAX implementation does real-time validation of 
the policies while it is evaluating a request.

• SecurityEvents are generated during processing
• This has performance gains and is more resistant to Denial 

of Service (DoS) style attacks.



Performance

• The StAX WS-Security stack uses far less memory for large 
requests (see Empirical Data section)

• It should be more efficient for a service handling many 
simultaneous requests as a result

• It performs better in some scenarios than the DOM stack, 
and worse in others

• Profiling and future optimisations will hopefully improve 
performance to a point where we can switch the default 
stack in CXF



What's not supported?

• XPath evaluation
• “Strict” Layout validation
• Policy combinations that require two separate Encryption 

actions (EncryptBeforeSigning + EncryptSignature)
• Policy combinations that require two separate Signature 

actions (e.g. Endorsing tokens with (a)symmetric 
bindings – with some exceptions).



WSS4J 2.0.0

• Lots of new features apart from StAX implementation
• New consolidated WS-SecurityPolicy model
• Support for securing message attachments
• Support for caching based on EhCache
• Support for encrypting passwords in Crypto properties files 

using Jasypt



Securing attachments in CXF 
3.0.0
Securing attachments in CXF 
3.0.0



Securing attachments

• Signing/encrypting message attachments not supported 
prior to CXF 3.0.0.

• WSS4J 2.0.0 supports the WS-Security SOAP Messages with 
Attachments Profile.

• If a “<sp:Attachments />” policy is used as a 
(Signed|Encrypted)Parts in CXF 3.0.0, all attachments 
are automatically secured.

• There are also policies to only sign the content or to 
include the attachment headers.



Example



Using MTOM

• If MTOM is enabled with WS-Security, attachments are 
inlined before the SOAP Body is secured.

• Signing/encrypting using MTOM is targeted for CXF 3.0.1.
• However, the cost associated with BASE-64 encoding the 

attachment + inlining it for signature digest calculation 
may make the SwA approach more efficient.

• CXF 3.0.0 has a minor efficiency gain not to inline the 
attachments with MTOM for most TransportBinding 
use-cases.



RS-Security in CXF 3.0.0RS-Security in CXF 3.0.0



RS-Security

• CXF supports XML Signature + Encryption for JAX-RS clients 
and endpoints as well.

• XML Signature options: Enveloped, Enveloping, Detached. 
• Separate interceptors for Signature + Encryption, that can 

be chained.
• Using XML Signature with PKI allows an alternative to the 

standard HTTP/BA over TLS or TLS with client auth.



Sample signed request



Streaming RS-Security

• It's possible to use the new StAX functionality for JAX-RS as 
well in CXF 3.0.0.

• New interceptors: XmlSec(Out|In)Interceptor
• XML Signature (enveloped only) + Encryption supported. 
• Testcase: 

https://github.com/coheigea/testcases/tree/master/apac
he/cxf/cxf-jaxrs-xmlsec



Some empirical data...Some empirical data...



Benchmarks I



Benchmarks II



Benchmarks III



Benchmarks IV



Using Single Sign-On (SSO)Using Single Sign-On (SSO)



Single Sign-On (SSO)

• Thus far we have focused on securing messages
• However, client authentication can also be expensive...
• This is where Single Sign-On (SSO) comes in
• The client “signs-on” to a centralized authentication 

service of some kind, and retains a resulting token for 
any subsequent authentication (until the user signs out).



SSO using WS-SecConv

• A really simple way supported in CXF for SSO is to use 
WS-SecureConversation.

• A rudimentary STS is embedded with a CXF endpoint
• The client authenticates and receives a token + negotiated 

secret.
• The client signs the request using the secret + references 

the token in any subsequent request.
• Testcase (SSOTest): 

https://github.com/coheigea/testcases/tree/master/apac
he/cxf/cxf-shiro



SSO using an STS

• CXF ships with an advanced SecurityTokenService (STS)
• The client authenticates to the STS + receives a SAML 

Token.
• The client caches the token + re-uses it until expiry.
• Roles/claims are embedded in the token for authorization
• Testcase (SSOTest): 

https://github.com/coheigea/testcases/tree/master/apac
he/cxf/cxf-sts



SSO using SAML SSO

• CXF supports SSO via the SAML SSO Web Profile
• A JAX-RS filter can redirect a service request to an IdP
• The IdP authenticates the client and redirects to the service
• Authenticated state saved as a cookie
• The SAML Assertion is also saved to allow for role retrieval
• Testcase 

https://github.com/coheigea/testcases/tree/master/apac
he/cxf/cxf-saml-sso



Questions


	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide2
	Slide3
	Slide 41
	Slide 42
	Slide 43
	Slide 44

