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Apache CXF

• One of the leading web service frameworks.
• Supports JAX-WS and JAX-RS frontend APIs
• Protocols: SOAP, XML/HTTP, RESTful HTTP, CORBA, etc.
• Transports: HTTP, JMS, JBI, etc.
• Comprehensive WS standards support.
• Security Services: STS, XKMS, Fediz.
• Strong OSGi support.



Apache CXF Stats

• Founded in 2006 as a merger of Celtix + XFire.
• Apache TLP releases go from 2.0.6 to the current 2.7.10 / 

3.0.0-milestone2.
• 33 committers, 22 of whom are PMC members.
• Embedded in other Apache projects such as Apache 

Syncope, Apache Camel, Apache TomEE+.
• Used in industry products such as JBoss Web Services, 

Jboss Fuse, Talend ESB, etc.



JAX-WS

• A service is typically defined by a WSDL document
• Java code generated by “WSDL2Java” functionality
• Alternatively, can start with code + use annotations
• Typically a SOAP binding is used over HTTP
• SOAP Body contains service payload
• SOAP Header contains service metadata



SOAP Envelope



JAX-RS

• Web Services using Representational State Transfer (REST) 
paradigm. 

• Can use WADL to define the service, but typically code + 
annotations are used

• Messages can be marshalled/unmarshalled to/from Java 
Objects using JAXB

• Messages in XML/JSON format.



Annotations Example
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WS-Security

• A set of OASIS specifications to secure SOAP Messages
• Message Confidentiality (XML Encryption)
• Message Integrity (XML Signature)
• Client Authentication via tokens (Username Tokens, 

Kerberos Tokens, SAML Tokens, Asymmetric Signature 
Certificates/Public Keys).



Secured SOAP Envelope



WS-SecurityPolicy

• WS-SecurityPolicy can be used to configure WS-Security via 
a WS-Policy expression.

• By embedding the policy in a WSDL, a service can publish 
security requirements to a client

• Client/Service only need to configure usernames, 
passwords, keys, etc.

• Requests are validated against the set of applicable 
policies



Example



WS-Security @ Apache

• Apache Santuario: XML Signature + XML Encryption
• Apache WSS4J: WS-Security layer built on top of Santuario
• Apache CXF / Apache Axis/Rampart: Web Services stacks 

that include WSS4J – WS-SecurityPolicy support, 
WS-Trust, WS-SecureConveration, etc.



A familiar problem...
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Security is Expensive

• There is a large performance penalty associated with using 
WS-Security.

• This is partly due to the work involved in signing and 
encrypting (in particular using XML).

• However, a large reason is due to the fact that up to now, 
WS-Security processing requires DOM.

• This requires a lot of memory for large requests
• Also, a StAX-enabled stack such as CXF needs to convert 

the request into DOM



Streaming WS-Security

• A WS-Security implementation based on StAX would solve 
the problem of large memory requirements and having 
to convert to DOM.

• However, there are huge difficulties with porting things like 
XML canonicalization to use a streaming approach.

• 2011: Problem solved by Marc Giger donating his SWSSF 
project to Apache, a streaming WS-Security prototype 
based on WSS4J.



SWSSF @ Apache

• Rather than create a new project, SWSSF has been 
integrated into the existing projects.

• The XML Signature + Encryption parts have been added to 
Apache Santuario 2.0.0.

• The WS-Security parts have been added to Apache WSS4J 
2.0.0.

• WSS4J now has two WS-Security stacks, one based on DOM 
and one on StAX.



CXF Integration

• The new StAX code is fully integrated into CXF
• It uses the exact same configuration as for the DOM code
• New interceptors: WSS4JStax(Out|In)Interceptor
• Works with WS-SecurityPolicy - StAX functionality enabled 

by a boolean configuration property 
(“ws-security.enable.streaming)

• DOM functionality is enabled by default for 
WS-SecurityPolicy



Real-time validation

• Apache CXF parses the set of WSS4J results + evaluates 
the set of applicable WS-SecurityPolicy policies against 
them.

• The new StAX implementation does real-time validation of 
the policies while it is evaluating a request.

• SecurityEvents are generated during processing
• This has performance gains and is more resistant to Denial 

of Service (DoS) style attacks.



Performance

• The StAX WS-Security stack uses far less memory for large 
requests (see Empirical Data section)

• It should be more efficient for a service handling many 
simultaneous requests as a result

• It performs better in some scenarios than the DOM stack, 
and worse in others

• Profiling and future optimisations will hopefully improve 
performance to a point where we can switch the default 
stack in CXF



What's not supported?

• XPath evaluation
• “Strict” Layout validation
• Policy combinations that require two separate Encryption 

actions (EncryptBeforeSigning + EncryptSignature)
• Policy combinations that require two separate Signature 

actions (e.g. Endorsing tokens with (a)symmetric 
bindings – with some exceptions).



WSS4J 2.0.0

• Lots of new features apart from StAX implementation
• New consolidated WS-SecurityPolicy model
• Support for securing message attachments
• Support for caching based on EhCache
• Support for encrypting passwords in Crypto properties files 

using Jasypt
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Securing attachments

• Signing/encrypting message attachments not supported 
prior to CXF 3.0.0.

• WSS4J 2.0.0 supports the WS-Security SOAP Messages with 
Attachments Profile.

• If a “<sp:Attachments />” policy is used as a 
(Signed|Encrypted)Parts in CXF 3.0.0, all attachments 
are automatically secured.

• There are also policies to only sign the content or to 
include the attachment headers.



Example



Using MTOM

• If MTOM is enabled with WS-Security, attachments are 
inlined before the SOAP Body is secured.

• Signing/encrypting using MTOM is targeted for CXF 3.0.1.
• However, the cost associated with BASE-64 encoding the 

attachment + inlining it for signature digest calculation 
may make the SwA approach more efficient.

• CXF 3.0.0 has a minor efficiency gain not to inline the 
attachments with MTOM for most TransportBinding 
use-cases.
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RS-Security

• CXF supports XML Signature + Encryption for JAX-RS clients 
and endpoints as well.

• XML Signature options: Enveloped, Enveloping, Detached. 
• Separate interceptors for Signature + Encryption, that can 

be chained.
• Using XML Signature with PKI allows an alternative to the 

standard HTTP/BA over TLS or TLS with client auth.



Sample signed request



Streaming RS-Security

• It's possible to use the new StAX functionality for JAX-RS as 
well in CXF 3.0.0.

• New interceptors: XmlSec(Out|In)Interceptor
• XML Signature (enveloped only) + Encryption supported. 
• Testcase: 

https://github.com/coheigea/testcases/tree/master/apac
he/cxf/cxf-jaxrs-xmlsec



Some empirical data...Some empirical data...



Benchmarks I



Benchmarks II



Benchmarks III



Benchmarks IV
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Single Sign-On (SSO)

• Thus far we have focused on securing messages
• However, client authentication can also be expensive...
• This is where Single Sign-On (SSO) comes in
• The client “signs-on” to a centralized authentication 

service of some kind, and retains a resulting token for 
any subsequent authentication (until the user signs out).



SSO using WS-SecConv

• A really simple way supported in CXF for SSO is to use 
WS-SecureConversation.

• A rudimentary STS is embedded with a CXF endpoint
• The client authenticates and receives a token + negotiated 

secret.
• The client signs the request using the secret + references 

the token in any subsequent request.
• Testcase (SSOTest): 

https://github.com/coheigea/testcases/tree/master/apac
he/cxf/cxf-shiro



SSO using an STS

• CXF ships with an advanced SecurityTokenService (STS)
• The client authenticates to the STS + receives a SAML 

Token.
• The client caches the token + re-uses it until expiry.
• Roles/claims are embedded in the token for authorization
• Testcase (SSOTest): 

https://github.com/coheigea/testcases/tree/master/apac
he/cxf/cxf-sts



SSO using SAML SSO

• CXF supports SSO via the SAML SSO Web Profile
• A JAX-RS filter can redirect a service request to an IdP
• The IdP authenticates the client and redirects to the service
• Authenticated state saved as a cookie
• The SAML Assertion is also saved to allow for role retrieval
• Testcase 

https://github.com/coheigea/testcases/tree/master/apac
he/cxf/cxf-saml-sso



Questions
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