
Introducing Log4j 2.0



History of Apache Log4j



Early Java Logging
• System.out and System.err 
• Originally, Java didn't have any form of logging other than abuse of 

the standard output and error PrintStream objects. 
• The shell running a Java application could simply redirect standard 

output and standard error to files. 
• It was common to include a sort of debug system property to 

enable or disable logging messages. 
• Many programmers still haven't upgraded from Logging 0.1.



Example Code
boolean	
  debug	
  =	
  
	
   Boolean.getBoolean(“DEBUG”);	
  	
  	
  	
  
!
if	
  (debug)	
  {	
  
	
   System.out.println(“Low	
  priority.”);	
  	
  	
  	
  
	
   System.err.println(“High	
  priority.”);	
  	
  	
  	
  
}	
  
!
catch	
  (final	
  Throwable	
  t)	
  {	
  
	
   t.printStackTrace();	
  	
  	
  	
  
}



The Original Log4j
• Written by Ceki Gülcü 
• Provided a system of named Loggers that aided in categorising 

and filtering log messages. 
• Allowed for more than two levels of logging similar to Apache 

HTTPD Server and other custom logging systems. 
• Easily configurable using a Java properties file, XML file, or 

programmatically. 
• Provided various ways to output and save log messages.



Example Code
private	
  static	
  final	
  Logger	
  LOGGER	
  =	
  
	
   Logger.getLogger(“org.apache.Foo”);	
  	
  	
  	
  
!
LOGGER.debug(“Low	
  priority.”);	
  
LOGGER.info(“Next	
  level	
  up.”);	
  
LOGGER.warn(“High	
  priority.”);	
  
LOGGER.error(“Higher	
  priority.”);	
  
LOGGER.fatal(“Catastrophic	
  priority.”);	
  
!
catch	
  (final	
  Throwable	
  t)	
  {	
  
	
   LOGGER.error(“Caught	
  exception.”,	
  t);	
  	
  	
  	
  
}



Logback
• Gülcü went on to create SLF4J and Logback 
• Provided parameterised log messages with placeholders. 
• Added markers for additional filterable message information. 
• Separated the logging API from the implementation. 

• Simple provider – console logging. 
• Logback – the main implementation. 
• Other bridges for code already using Log4j 1.2, 

java.util.logging, and Apache Commons Logging.



Example Code
private	
  static	
  final	
  Logger	
  LOGGER	
  =	
  
	
   LoggerFactory.getLogger(“org.apache.Foo”);	
  	
  	
  	
  
!
final	
  String	
  msg	
  =	
  “{}	
  priority.”;	
  
LOGGER.debug(msg,	
  “Low”);	
  
LOGGER.info(msg,	
  “Medium”);	
  
LOGGER.warn(msg,	
  “High”);	
  
LOGGER.error(msg,	
  “Higher”);	
  
!
catch	
  (final	
  Throwable	
  t)	
  {	
  
	
   LOGGER.error(“Caught	
  exception.”,	
  t);	
  	
  	
  	
  
}



Log4j 2
• Written by Ralph Goers to address SLF4J problems. 
• Added new standardised SYSLOG format from RFC 5424. 
• Decoupled loggers and configurations using a bridge pattern to 

allow for runtime configuration changes. 
• Provided appender failover configuration to avoid ignoring 

appender exceptions. 
• Numerous synchronisation and other performance bottlenecks 

fixed. 
• Separate plugin interface for easy extensibility.



Example Code
private	
  static	
  final	
  Logger	
  LOGGER	
  =	
  
	
   LogManager.getLogger(“org.apache.Foo”);	
  	
  	
  	
  
!
final	
  String	
  msg	
  =	
  “{}	
  priority.”;	
  
LOGGER.debug(msg,	
  “Low”);	
  
LOGGER.info(msg,	
  “Medium”);	
  
LOGGER.warn(msg,	
  “High”);	
  
LOGGER.error(msg,	
  “Higher”);	
  
!
catch	
  (final	
  Throwable	
  t)	
  {	
  
	
   LOGGER.catching(t);	
  	
  	
  	
  
}



Log4j 2 API & Core Architecture





LogManager

• Root of the logging system. 
• Finds an available LoggerContextFactory on initialisation. 
• Used for getting and creating Loggers and LoggerContexts 
• Provides a convenient way to get a Logger that uses printf-style 

parameterised messages instead of the default {}-style.



Logger
• Same concept as all the other logging frameworks. 
• Each class usually has a private static final Logger. 
• Use LogManager.getLogger() to get a logger named after the 

calling class. This is the standard named logger pattern. 
• Use the various logging levels to log messages: TRACE, DEBUG, 

INFO, WARN, ERROR, FATAL. 
• Also available: Logger.catching(Throwable), 

Logger.throwing(Throwable), Logger.entry(Object…), 
Logger.exit(ret)



Logger Hierarchy
• Loggers are named in a hierarchy similar to Java package names. 
• “org” is the parent of “org.apache” which is the parent of 

“org.apache.logging”, etc. 
• The root logger is the parent of all and is named “”. 

• This can be obtained through LogManager.getRootLogger() 
• This hierarchy is used for configuring and filtering loggers.



Marker
• Simple mechanism to name and filter loggers. 
• Independent of loggers, but can have their own hierarchy. 
• Useful for aspect-oriented logging and other cross-cutting 

concerns (e.g., system initialisation). 
• Similar to loggers, markers are obtained through the 

MarkerManager.getMarker family of methods.



LoggerContext
• Anchor point for the logging system. 
• There can be multiple LoggerContexts active (e.g., on an 

application server or a servlet container). 
• Used for tracking existing loggers and creating new ones on 

request. 
• When multiple LoggerContexts are available, a ContextSelector is 

used for selecting the appropriate one. 
• Use a given ClassLoader to associate with a context. 
• Use JNDI lookups for named contexts.



Configuration
• Part of the Core API. 
• Represents a parsed configuration to be used with one or more 

LoggerContexts. 
• Currently supports XML, JSON, and YAML file formats along with 

programmatic creation of this interface. 
• Independent of the loggers and contexts it applies to in order to 

support live configuration updates.



Lookup
• Provides property variables for configuration files. 
• Can be obtained through several sources: 

• Environment variables and system properties 
• JNDI 
• ServletContext 
• ThreadContextMap (MDC/NDC) 
• MapMessages 
• StructuredDataMessages



LoggerConfig
• Another part of the Core API. 
• These represent the logger elements in the configuration file. 
• Links one Configuration to an arbitrary number of Loggers. 
• Filters are available at this level (e.g., through levels, markers, 

regular expressions, and diagnostic contextual information). 
• Loggers pass along their logged messages to their respective 

LoggerConfig.



Appender
• Used for routing log messages to a physical destination. 
• Contains a Layout object for unmarshalling LogEvent objects. 
• Additively used based on the Logger hierarchy and config. 
• Example appender types: 

• Console, File, OutputStream. 
• TCP, UDP, Syslog, Flume, and other network clients/servers. 
• SMTP, JMS, JPA, NoSQL, and other frameworks. 
• Failover appenders for handling appender errors. 
• Asynchronous logging for massive performance gains.





Filter
• Selects which log events should be logged or not. 
• Can use many types of contextual information to determine 

whether or not a log event should move along the logging system. 
• In the flow from Logger to LoggerConfig to Appender, can be: 

• Applied to a Logger before LoggerConfig. 
• Applied to a LoggerConfig before any Appender. 
• Applied to a LoggerConfig for specific Appenders. 
• Applied to specific Appenders.



Pattern
• Configure what relevant log event data to output. 
• Some data is what is provided by the programmer in the log call 

itself (e.g., the logger name, message, marker, throwable). 
• Other information is dynamically calculated as needed (e.g., caller 

class/method/location, thread name, date/time, mapped and 
nested diagnostic context information). 

• Usually used with a PatternLayout (which is also the default Layout 
if unspecified).



Layout
• Configures the output format of log events. 
• Specifies common header and footer data to include. 
• Besides plain text, there are other useful layouts: 

• Syslog (simple) and RFC 5424 (far more information). 
• HTML, XML, and JSON text. 
• Serialised Java objects.



Questions?


