APACHEACGON

APRIL 71-9,2014

Apache Datafu (incubating)

APAGHEAGON

e

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Presented For The Apache Foundation By
1 LINUX FOUNDATION

APACHEACGON

Apache DataFu DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

» Apache DataFu is a collection of libraries for working with
large-scale data in Hadoop.

« Currently consists of two libraries:
« DataFu Pig — a collection of Pig UDFs

« DataFu Hourglass — incremental processing
 Incubating

APACHEACGON

History DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Linkedln had a number of teams who had developed
generally useful UDFs
Problems:
* No centralized library
* No automated testing
Solutions:
* Unit tests (PigUnit)
* Code coverage (Cobertura)
Initially open-sourced 2011; 1.0 September, 2013

What it’s all about

* Making it easier to work with large scale data
 Well-documented, well-tested code

« Easy to contribute
» Extensive documentation
« Getting started guide

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

* i.e. for DataFu Pig — it should be easy to add a UDF,

add a test, ship it

APACHEACGON

DataFu community DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

People who use Hadoop for working with data

Used extensively at LinkedIn

Included in Cloudera’s CDH
Included in Apache Bigtop

APACHEACGON

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Presented For The Apache Foundation By
1 LINUX FOUNDATION

DataFu Pig

» A collection of UDFs for data analysis covering:

Statistics

« Bag Operations

Set Operations
Sessions
Sampling
General Utility
And more..

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

APACHEACGON

Coalesce DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014
« Acommon case: replace null values with a default

data = FOREACH data GENERATE (val IS NOT NULL ? val : 0) as result;

 To return the first non-null value

data = FOREACH data GENERATE (vall IS NOT NULL ? vall :
(val2 IS NOT NULL ? val2 :
(val3 IS NOT NULL ? val3 :

NULL))) as result;

Presented For The Apache Foundation By
1l LINUX FOUNDATION

APACHEACGON

Coalesce DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

» Using Coalesce to set a default of zero

data = FOREACH data GENERATE Coalesce(val,0) as result;

* |t returns the first non-null value

data = FOREACH data GENERATE Coalesce(vall,val2,val3) as result;

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Compute session statistics [JENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« Suppose we have a website, and we want to see how
long members spend browsing it

 We also want to know who are the most engaged

« Raw data is the click stream

pv = LOAD 'pageviews.csv' USING PigStorage(',')
AS (memberId:int, time:long, url:chararray);

APACHEACGON

Compute session statistics [JENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

* First, what is a session?
« Session = sustained user activity
« Session ends after 10 minutes of no activity

DEFINE Sessionize datafu.pig.sessions.Sessionize('10m');

» Session expects ISO-formatted time

DEFINE UnixToISO
org.apache.pig.piggybank.evaluation.datetime.convert.UnixToISO();

APACHEACGON

Compute session statistics [JENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

» Sessionize appends a sessionld to each tuple
« All tuples in the same session get the same sessionld

pv_sessionized = FOREACH (GROUP pv BY memberId) ({
ordered = ORDER pv BY isoTime;
GENERATE FLATTEN(Sessionize(ordered))
AS (isoTime, time, memberId, sessionId);

}i

pv_sessionized = FOREACH pv sessionized GENERATE
sessionlId, memberId, time;

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Compute session statistics [JENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

o Statistics:

DEFINE Median datafu.pig.stats.StreamingMedian();
DEFINE Quantile datafu.pig.stats.StreamingQuantile('0.90','0.95");

DEFINE VAR datafu.pig.stats.VAR();

* You have your choice between streaming (approximate)
and exact calculations (slower, require sorted input)

APACHEACGON

Compute session statistics [JENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« Computer the session length in minutes

session times =
FOREACH (GROUP pv_sessionized BY (sessionId,memberId))
GENERATE group.sessionld as sessionId,
group.memberId as memberId,
(MAX(pv_sessionized.time) -
MIN(pv_sessionized.time))
/ 1000.0 / 60.0 as session length;

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Compute session statistics [JENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« Compute the statistics

session stats = FOREACH (GROUP session times ALL) {
GENERATE
AVG(ordered.session length) as avg session,
SORT (VAR (ordered.session length)) as std dev session,
Median(ordered.session length) as median session,
Quantile(ordered.session length) as quantiles session;

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Compute session statistics [JENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

» Find the most engaged users

long sessions =
filter session times by
session length >
session stats.quantiles session.quantile 0 95;

very engaged users =
DISTINCT (FOREACH long sessions GENERATE memberId);

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Pig Bags DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

* Pig represents collections as a bag
 In PigLatin, the ways in which you can manipulate a bag

are limited
« Working with an inner bag (inside a nested block) can be

difficult

APACHEACGON

DataFu Pig Bags DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« DataFu provides a number of operations to let you
transform bags

AppendToBag — add a tuple to the end of a bag

PrependToBag — add a tuple to the front of a bag

BagConcat — combine two (or more) bags into one

BagSplit — split one bag into multiples

APACHEACGON

DataFu Pig Bags DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

» |t also provides UDFs that let you operate on bags similar
to how you might with relations
« BagGroup — group operation on a bag
« CountEach — count how many times a tuple appears
« BaglLeftOuterdoin — join tuples in bags by key

APACHEACGON

Counting Events DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

» Let’s consider a system where a user is recommended
items of certain categories and can act to accept or reject
these recommendations

impressions = LOAD 'Simpressions' AS (user_ id:int, item id:int,
timestamp:long);

accepts = LOAD 'Saccepts' AS (user id:int, item id:int, timestamp:long);
rejects = LOAD 'Srejects' AS (user id:int, item id:int, timestamp:long);

APACHEACGON

Counting Events DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« We want to know, for each user, how many times an item
was shown, accepted and rejected

features: {
user id:int,
items: {(
item id:int,
impression count:int,
accept count:int,
reject count:int)}

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Counting Events DENVER

WESTIN DENVER DOWNTOWN

One approach... APRIL 7-9,2014

-- First cogroup
features grouped = COGROUP
impressions BY (user id, item id),
accepts BY (user id, item id),
rejects BY (user id, item id);
-- Then count
features counted = FOREACH features grouped GENERATE
FLATTEN(group) as (user id, item id),
COUNT STAR(impressions) as impression count,
COUNT_ STAR(accepts) as accept count,
COUNT STAR(rejects) as reject count;
-- Then group again
features = FOREACH (GROUP features counted BY user id) GENERATE
group as user_ id,
features counted.(item id, impression count, accept count, reject count)
as items;

Presented For The Apache Foundation By
1 LINUX FOUNDATION

Counting Events

« But it seems wasteful to have to group twice

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

* Even big data can get reasonably small once you start

slicing and dicing it

 \WWant to consider one user at a time — that should be small

enough to fit into memory

APACHEACGON

Counting Events DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Another approach: Only group once
Bag manipulation UDFs to avoid the extra mapreduce job

DEFINE CountEach datafu.pig.bags.CountEach('flatten');
DEFINE BagLeftOuterJoin datafu.pig.bags.BagLeftOuterJoin();
DEFINE Coalesce datafu.pig.util.Coalesce();

CountEach — counts how many times a tuple appears in a
bag

BaglLeftOuterdJoin — performs a left outer join across
multiple bags

APACHEACGON

Counting Events DENVER

WESTIN DENVER DOWNTOWN

A DataFu approach... APRIL 7-9,2014

features grouped = COGROUP impressions BY user id, accepts BY user id,
rejects BY user id;

features counted = FOREACH features grouped GENERATE
group as user_id,
CountEach(impressions.item id) as impressions,
CountEach(accepts.item id) as accepts,
CountEach(rejects.item id) as rejects;

features joined = FOREACH features counted GENERATE
user_ 1id,
BagLeftOuterJoin (
impressions, 'item id',
accepts, 'item id',
rejects, 'item id'
) as items;

Presented For The Apache Foundation By
1 LINUX FOUNDATION

Counting Events

* Reuvisit Coalesce to give default values

features = FOREACH features joined {
projected = FOREACH items GENERATE
impressions::item id as item id,
impressions::count as impression count,
Coalesce(accepts::count, 0) as accept count,
Coalesce(rejects::count, 0) as reject count;
GENERATE user id, projected as items;

}

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Sampling DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« Suppose we only wanted to run our script on a sample of
the previous input data

impressions = LOAD 'Simpressions' AS (user_ id:int, item id:int,

item category:int, timestamp:long);
accepts = LOAD 'Saccepts' AS (user id:int, item id:int, timestamp:long);
rejects = LOAD 'Srejects' AS (user id:int, item id:int, timestamp:long);

 We have a problem, because the cogroup is only going to
work if we have the same key (user _id) in each relation

APACHEACGON

Sampling DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

e DataFu provides SampleByKey

DEFINE SampleByKey datafu.pig.sampling.SampleByKey(’'a salt','0.01');

impressions = FILTER impressions BY SampleByKey('user id');
accepts = FILTER impressions BY SampleByKey('user id');
rejects = FILTER rejects BY SampleByKey('user id');
features = FILTER features BY SampleByKey('user id');

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Left outer joins DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

» Suppose we had three relations:

inputl = LOAD 'inputl' using PigStorage(',') AS (key:INT,val:INT);
input2 = LOAD 'input2' using PigStorage(',') AS (key:INT,val:INT);
input3 = LOAD 'input3' using PigStorage(',') AS (key:INT,val:INT);

« And we wanted to do a left outer join on all three:

joined = JOIN inputl BY key LEFT,
input2 BY key,
input3 BY key;

Unfortunately, this is not IegaI—PigLatin

nted For The Apache ation By
‘lLiNUX FOUMDA "ION

Left outer joins

 Instead, you need to join twice:

datal
data?2

JOIN inputl BY key LEFT, input2 BY key;
JOIN datal BY inputl::key LEFT, input3 BY key;

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« This approach requires two MapReduce jobs, making it

inefficient, as well as inelegant

esented For The Apache Foundation By
(1 LINUX FOUNDATION

Left outer joins

* There is always cogroup:

datal COGROUP inputl BY key, input2 BY key, input3 BY key;
data2 FOREACH datal GENERATE
FLATTEN(inputl), -- left join on this
FLATTEN ((ISEmpty(input2) ? TOBAG(TOTUPLE((int)null, (int)null))
as (input2::key,input2::val),
FLATTEN((IsEmpty(input3) ? TOBAG(TOTUPLE((int)null, (int)null))
as (input3::key,input3::val);

« But, it's cumbersome and error-prone

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

: input2))

: input3))

Presented For The Apache Foundation By
1l LINUX FOUNDATION

APACHEACGON

Left outer joins DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« So, we have EmptyBagToNullFields

datal COGROUP inputl BY key, input2 BY key, input3 BY key;
data2 FOREACH datal GENERATE

FLATTEN(inputl), -- left join on this

FLATTEN (EmptyBagToNullFields (input2)),

FLATTEN (EmptyBagToNullFields (input3));

 Cleaner, easier to use

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Left outer joins DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

e Can turn it into a macro

DEFINE left outer join(relationl, keyl, relation2, key2, relation3, key3)
returns joined {
cogrouped = COGROUP
Srelationl BY S$Skeyl, Srelation2 BY S$key2, $relation3 BY Skey3;
$joined = FOREACH cogrouped GENERATE
FLATTEN(Srelationl),
FLATTEN (EmptyBagToNullFields($relation2)),
FLATTEN (EmptyBagToNullFields(Srelation3));

features = left outer join(inputl, wvall, input2, val2, input3, val3);

Presented For The Apache Foundation By

1 LINUX FOUNDATION

APACHEACGON

Schema and aliases DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« A common (bad) practice in Pig is to use positional notation
to reference fields
* Hard to maintain
« Script is tightly coupled to order of fields in input
* Inserting a field in the beginning breaks things
downstream
 UDFs can have this same problem
« Especially problematic because code is separated, so
the dependency is not obvious

APACHEACGON

Schema and aliases DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

* Suppose we are calculating monthly mortgage payments
for various interest rates

mortgage = load 'mortgage.csv' using PigStorage('|"')
as (principal:double,
num payments:int,
interest rates: bag {tuple(interest rate:double)});

esented For The Apache Founc nB

C]l LINUX FOUNDATION

APACHEACGON

Schema and aliases DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

* So, we write a UDF to compute the payments
* First, we need to get the input parameters:

@Override
public DataBag exec(Tuple input) throws IOException
{
Double principal = (Double)input.get(0);
Integer numPayments = (Integer)input.get(l);
DataBag interestRates = (DataBag)input.get(2);
/] ..

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Schema and aliases DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

 Then do some computation:

DataBag output = bagFactory.newDefaultBag();

for (Tuple interestTuple : interestRates) {
Double interest = (Double)interestTuple.get(0);

double monthlyPayment = computeMonthlyPayment (principal, numPayments,
interest);

output.add(tupleFactory.newTuple(monthlyPayment));
}

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Schema and aliases DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

 The UDF then gets applied

payments = FOREACH mortgage GENERATE MortgagePayment($0,$1,$2);

 Or, a bit more understandably

payments = FOREACH mortgage GENERATE
MortgagePayment (principal,num payments,interest rates);

ented For The Apache Foundation By

‘l LINUX FOUNDATION

APACHEACGON

Schema and aliases DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

 Later, the data is changes, and a field is prepended to
tuples in the interest_rates bag

mortgage = load 'mortgage.csv' using PigStorage('|"')
as (principal:double,
num payments:int,
interest rates: bag {tuple(wow change:double,interest rate:double)});

» The script happily continues to work, and the output data
begins to flow downstream, causing serious errors, later

APACHEACGON

Schema and aliases DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

» Write the UDF to fetch arguments by name using the
schema
» AliasableEvalFunc can help

Double principal = getDouble(input, "principal");
Integer numPayments = getInteger(input, "num payments");
DataBag interestRates = getBag(input,"interest rates");

for (Tuple interestTuple : interestRates) {
Double interest = getDouble(interestTuple,
getPrefixedAliasName("interest rates”, "interest rate"));
// compute monthly payment...

}

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

Other awesome things

 New and coming things

Functions for calculating entropy
OpenNLP wrappers

New and improved Sampling UDFs
Additional Bag UDFs

InHashSet

More...

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

APACHEACGON

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Presented For The Apache Foundation By
1 LINUX FOUNDATION

APACHEACGON

Event Collection BENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« Typically online websites have instrumented
services that collect events

 Events stored in an offline system (such as i —>

Hadoop) for later analysis

« Using events, can build dashboards with | Services J
metrics such as: T
« # of page views over last month | Evem: —
« # of active users over last month el

* Metrics derived from events can also be useful ;
in recommendation pipelines Hadoop

 e.g. impression discounting

Event Storage

Events can be categorized into topics, for example:
* page view
e user login
» ad impression/click
Store events by topic and by day:
» /data/page_view/daily/2013/10/08
» /data/page_view/daily/2013/10/09

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Hourglass allows you to perform computation over specific time

windows of data stored in this format

APACHEACGON

Computation Over Time Windows DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

* In practice, many of computations over time
windows use either:

Fixed-start window Fixed-length window
Page Views /Day Page Views /Day
A latest A latest Total Page Views,
Newer Newer last 5 days

| Total Page Views, |
as of today Job L 1

- 4 days

Presented For The Apache Foundation By
1 LINUX FOUNDATION

APACHEACGON

Recognizing Inefficiencies BENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« But, frequently jobs re-compute these daily
 From one day to next, input changes little

 Fixed-start window

. Day n Day n+1
Includes one new day: . _
age Views /Day Page Views / Day
latest
A latest A
Newer New
| |
Olcli r O)L
v S v | start
Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACGON

Recognizing Inefficiencies DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

* Fixed-length window includes one new day, minus
oldest day

Day n Day n+1
Page Views / Day Page Views /Day
latest
A latest A
Newer Newer
I I Job
Job
| |
Old Older
A4 \

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

APACHEACON
Improving Fixed-Start Computations DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« Suppose we must compute page view counts per member

 The job consumes all days of available input, producing one

Output. Input Output
* We call this a partition-collapsing job. Day 1
\
 But, if the job runs tomorrow it has Day2 “ﬂ[“”"'“ﬁ%"a“mg}—v traughn
to reprocess the same data. i
Dayn

‘ Page view counts
Page view events, per member

by day

Presented For The Apache Foundation By

Cl LINUX FOUNDATION

Improving Fixed-Start Computations

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« Solution: Merge new data with previous output

 We can do this because this is an arithmetic operation

* Hourglass provides a
partition-collapsing job that
supports output reuse.

Input

C_,

| __—

Day n+1

Page view events,
by day

Partition Collapsing
Job

I

Output

Days 1
through n

Days 1
through n+1

Page view counts
per member

Pr d For The Apache ation By
‘l LiNUX FOUMDA‘ "ION

APACHEACGON

Partition-Collapsing Job BENVER
Architecture (Fixed-Start) S,

 When applied to a fixed-start window
computation:

Days
1 through n
Mapper
. . R
bll Identlty() }\\‘educer\‘
] -~ Days
merge() J “1 1 through n+1
Mappe
_»| accumulate
Day n+1 >! map() }'—"‘" [0

Presented For The Apache Foundation By
1 LINUX FOUNDATION

APACHEACON
Improving Fixed-Length Computations DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« For a fixed-length job, can reuse output using a
similar trick:

Input Output

 Add new day to previous

Days 1
output o
{Pamtion CollapsingL
Job

* Subtract old day from result —— "

Days 2
through n+1
 We can subtract the old day —
Slnce thIS IS arlthmetlc Page view events, Page view counts
by day per member

Cl LINUX FOUNDATION

APACHEACGON

Partition-Collapsing Job
Architecture (Fixed-Length) DENVER

APRIL 7-9,2014

 When applied to a fixed-length window computation:

Days
1 through n
Mapper
»| identity() }\\ Reduoer
\ merge(\
Mapper b 8
Day n+1 > mapl() |I >[accumulate() v
f] -~ Days
“““““ ge()] > 2 through n+1
Mapper)
Day 1 =|| mapl() |I >[accumulate()

Presented For The Apache Foundation By
1 LINUX FOUNDATION

APACHEACON
Improving Fixed-Length Computations DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

 But, for some operations, cannot subtract old data
« example: max(), min()

« Cannot reuse previous output, so how to reduce computation?

Partition Collapsing
Job

Prese or The Apache ation By
il LiNUX FOUMDA‘ "ION

Input Output

« Solution: partition-preserving job

Day 1 Day 1

« Partitioned input data,

Partition Preserving
Job

Day2 Day2

« partitioned output data

aggregate the data in advance Da:yn

APACHEACON
Partition-Preserving Job Architecture DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Input Partitioner Output

Mapper

Day 1 mapl() }\\' Reducer Day 1
—_ /
Mapper

Day 2 map() I 4‘!— accumulate() I—-—_) Day 2

Mapper

Day 3 { mapl() }\\ Reducer Day 3
\ /
Mapper

accumulate
Day 4 map() I—————’— ’! OI | Daya4

Presented For The Apache Foundation By
1 LINUX FOUNDATION

APACHEACGON

MapReduce in Hourglass DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

 MapReduce is a fairly general programming model
* Hourglass requires:

* reduce() must output (key,value) pair
* reduce() must produce at most one value
* reduce() implemented by an accumulator

* Hourglass provides all the MapReduce boilerplate for
you for these types of jobs

Summary

* Two types of jobs:

Partition-preserving: consume partitioned
Input data, produce partitioned output data

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Partition-collapsing: consume partitioned

iInput data, produce single output

Summary

You provide:

Input: time range, input paths
Implement: map(), accumulate()

Optional: merge(), unmerge()

APACHEACGON

DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

Hourglass provides the rest to make it easier to

Implement jobs that incrementally process

APACHEACGON

Questions? DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

http://datafu.incubator.apache.org/

Presented For The Apache Foundation By
1l LINUX FOUNDATION

