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» Apache DataFu is a collection of libraries for working with
large-scale data in Hadoop.

« Currently consists of two libraries:
« DataFu Pig — a collection of Pig UDFs

« DataFu Hourglass — incremental processing
 Incubating
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Linkedln had a number of teams who had developed
generally useful UDFs
Problems:
* No centralized library
* No automated testing
Solutions:
* Unit tests (PigUnit)
* Code coverage (Cobertura)
Initially open-sourced 2011; 1.0 September, 2013



What it’s all about

* Making it easier to work with large scale data
 Well-documented, well-tested code

« Easy to contribute
» Extensive documentation
« Getting started guide
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* i.e. for DataFu Pig — it should be easy to add a UDF,

add a test, ship it



APACHEACGON

DataFu community DENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

People who use Hadoop for working with data

Used extensively at LinkedIn

Included in Cloudera’s CDH
Included in Apache Bigtop
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DataFu Pig

» A collection of UDFs for data analysis covering:

Statistics

« Bag Operations

Set Operations
Sessions
Sampling
General Utility
And more..
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« Acommon case: replace null values with a default

data = FOREACH data GENERATE (val IS NOT NULL ? val : 0) as result;

 To return the first non-null value

data = FOREACH data GENERATE (vall IS NOT NULL ? vall :
(val2 IS NOT NULL ? val2 :
(val3 IS NOT NULL ? val3 :

NULL))) as result;
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» Using Coalesce to set a default of zero

data = FOREACH data GENERATE Coalesce(val,0) as result;

* |t returns the first non-null value

data = FOREACH data GENERATE Coalesce(vall,val2,val3) as result;
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« Suppose we have a website, and we want to see how
long members spend browsing it

 We also want to know who are the most engaged

« Raw data is the click stream

pv = LOAD 'pageviews.csv' USING PigStorage(',')
AS (memberId:int, time:long, url:chararray);
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* First, what is a session?
« Session = sustained user activity
« Session ends after 10 minutes of no activity

DEFINE Sessionize datafu.pig.sessions.Sessionize('10m');

» Session expects ISO-formatted time

DEFINE UnixToISO
org.apache.pig.piggybank.evaluation.datetime.convert.UnixToISO();
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» Sessionize appends a sessionld to each tuple
« All tuples in the same session get the same sessionld

pv_sessionized = FOREACH (GROUP pv BY memberId) ({
ordered = ORDER pv BY isoTime;
GENERATE FLATTEN(Sessionize(ordered))
AS (isoTime, time, memberId, sessionId);

}i

pv_sessionized = FOREACH pv sessionized GENERATE
sessionlId, memberId, time;
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o Statistics:

DEFINE Median datafu.pig.stats.StreamingMedian();
DEFINE Quantile datafu.pig.stats.StreamingQuantile('0.90','0.95");

DEFINE VAR datafu.pig.stats.VAR();

* You have your choice between streaming (approximate)
and exact calculations (slower, require sorted input)
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« Computer the session length in minutes

session times =
FOREACH (GROUP pv_sessionized BY (sessionId,memberId))
GENERATE group.sessionld as sessionId,
group.memberId as memberId,
(MAX(pv_sessionized.time) -
MIN(pv_sessionized.time))
/ 1000.0 / 60.0 as session length;

Presented For The Apache Foundation By

Cl LINUX FOUNDATION



APACHEACGON

Compute session statistics  [JENVER

WESTIN DENVER DOWNTOWN

APRIL 7-9,2014

« Compute the statistics

session stats = FOREACH (GROUP session times ALL) {
GENERATE
AVG(ordered.session length) as avg session,
SORT (VAR (ordered.session length)) as std dev session,
Median(ordered.session length) as median session,
Quantile(ordered.session length) as quantiles session;
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» Find the most engaged users

long sessions =
filter session times by
session length >
session stats.quantiles session.quantile 0 95;

very engaged users =
DISTINCT (FOREACH long sessions GENERATE memberId);
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* Pig represents collections as a bag
 In PigLatin, the ways in which you can manipulate a bag

are limited
« Working with an inner bag (inside a nested block) can be

difficult
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« DataFu provides a number of operations to let you
transform bags

AppendToBag — add a tuple to the end of a bag

PrependToBag — add a tuple to the front of a bag

BagConcat — combine two (or more) bags into one

BagSplit — split one bag into multiples
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» |t also provides UDFs that let you operate on bags similar
to how you might with relations
« BagGroup — group operation on a bag
« CountEach — count how many times a tuple appears
« BaglLeftOuterdoin — join tuples in bags by key
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» Let’s consider a system where a user is recommended
items of certain categories and can act to accept or reject
these recommendations

impressions = LOAD 'Simpressions' AS (user_ id:int, item id:int,
timestamp:long);

accepts = LOAD 'Saccepts' AS (user id:int, item id:int, timestamp:long);
rejects = LOAD 'Srejects' AS (user id:int, item id:int, timestamp:long);
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« We want to know, for each user, how many times an item
was shown, accepted and rejected

features: {
user id:int,
items: {(
item id:int,
impression count:int,
accept count:int,
reject count:int)}
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-- First cogroup
features grouped = COGROUP
impressions BY (user id, item id),
accepts BY (user id, item id),
rejects BY (user id, item id);
-- Then count
features counted = FOREACH features grouped GENERATE
FLATTEN(group) as (user id, item id),
COUNT STAR(impressions) as impression count,
COUNT_ STAR(accepts) as accept count,
COUNT STAR(rejects) as reject count;
-- Then group again
features = FOREACH (GROUP features counted BY user id) GENERATE
group as user_ id,
features counted.(item id, impression count, accept count, reject count)
as items;
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Counting Events

« But it seems wasteful to have to group twice
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* Even big data can get reasonably small once you start

slicing and dicing it

 \WWant to consider one user at a time — that should be small

enough to fit into memory
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Another approach: Only group once
Bag manipulation UDFs to avoid the extra mapreduce job

DEFINE CountEach datafu.pig.bags.CountEach('flatten');
DEFINE BagLeftOuterJoin datafu.pig.bags.BagLeftOuterJoin();
DEFINE Coalesce datafu.pig.util.Coalesce();

CountEach — counts how many times a tuple appears in a
bag

BaglLeftOuterdJoin — performs a left outer join across
multiple bags
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features grouped = COGROUP impressions BY user id, accepts BY user id,
rejects BY user id;

features counted = FOREACH features grouped GENERATE
group as user_id,
CountEach(impressions.item id) as impressions,
CountEach(accepts.item id) as accepts,
CountEach(rejects.item id) as rejects;

features joined = FOREACH features counted GENERATE
user_ 1id,
BagLeftOuterJoin (
impressions, 'item id',
accepts, 'item id',
rejects, 'item id'
) as items;
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Counting Events

* Reuvisit Coalesce to give default values

features = FOREACH features joined {
projected = FOREACH items GENERATE
impressions::item id as item id,
impressions::count as impression count,
Coalesce(accepts::count, 0) as accept count,
Coalesce(rejects::count, 0) as reject count;
GENERATE user id, projected as items;

}
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« Suppose we only wanted to run our script on a sample of
the previous input data

impressions = LOAD 'Simpressions' AS (user_ id:int, item id:int,

item category:int, timestamp:long);
accepts = LOAD 'Saccepts' AS (user id:int, item id:int, timestamp:long);
rejects = LOAD 'Srejects' AS (user id:int, item id:int, timestamp:long);

 We have a problem, because the cogroup is only going to
work if we have the same key (user _id) in each relation
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e DataFu provides SampleByKey

DEFINE SampleByKey datafu.pig.sampling.SampleByKey(’'a salt','0.01');

impressions = FILTER impressions BY SampleByKey('user id');
accepts = FILTER impressions BY SampleByKey('user id');
rejects = FILTER rejects BY SampleByKey('user id');
features = FILTER features BY SampleByKey('user id');
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» Suppose we had three relations:

inputl = LOAD 'inputl' using PigStorage(',') AS (key:INT,val:INT);
input2 = LOAD 'input2' using PigStorage(',') AS (key:INT,val:INT);
input3 = LOAD 'input3' using PigStorage(',') AS (key:INT,val:INT);

« And we wanted to do a left outer join on all three:

joined = JOIN inputl BY key LEFT,
input2 BY key,
input3 BY key;

Unfortunately, this is not IegaI—PigLatin
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Left outer joins

 Instead, you need to join twice:

datal
data?2

JOIN inputl BY key LEFT, input2 BY key;
JOIN datal BY inputl::key LEFT, input3 BY key;
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« This approach requires two MapReduce jobs, making it

inefficient, as well as inelegant
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Left outer joins

* There is always cogroup:

datal COGROUP inputl BY key, input2 BY key, input3 BY key;
data2 FOREACH datal GENERATE
FLATTEN(inputl), -- left join on this
FLATTEN ( (ISEmpty(input2) ? TOBAG(TOTUPLE( (int)null, (int)null))
as (input2::key,input2::val),
FLATTEN( (IsEmpty(input3) ? TOBAG(TOTUPLE( (int)null, (int)null))
as (input3::key,input3::val);

« But, it's cumbersome and error-prone
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: input2))

: input3))
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« So, we have EmptyBagToNullFields

datal COGROUP inputl BY key, input2 BY key, input3 BY key;
data2 FOREACH datal GENERATE

FLATTEN(inputl), -- left join on this

FLATTEN (EmptyBagToNullFields (input2)),

FLATTEN (EmptyBagToNullFields (input3));

 Cleaner, easier to use
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e Can turn it into a macro

DEFINE left outer join(relationl, keyl, relation2, key2, relation3, key3)
returns joined {
cogrouped = COGROUP
Srelationl BY S$Skeyl, Srelation2 BY S$key2, $relation3 BY Skey3;
$joined = FOREACH cogrouped GENERATE
FLATTEN(Srelationl),
FLATTEN (EmptyBagToNullFields($relation2)),
FLATTEN (EmptyBagToNullFields(Srelation3));

features = left outer join(inputl, wvall, input2, val2, input3, val3);
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« A common (bad) practice in Pig is to use positional notation
to reference fields
* Hard to maintain
« Script is tightly coupled to order of fields in input
* Inserting a field in the beginning breaks things
downstream
 UDFs can have this same problem
« Especially problematic because code is separated, so
the dependency is not obvious
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* Suppose we are calculating monthly mortgage payments
for various interest rates

mortgage = load 'mortgage.csv' using PigStorage('|"')
as (principal:double,
num payments:int,
interest rates: bag {tuple(interest rate:double)});
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* So, we write a UDF to compute the payments
* First, we need to get the input parameters:

@Override
public DataBag exec(Tuple input) throws IOException
{
Double principal = (Double)input.get(0);
Integer numPayments = (Integer)input.get(l);
DataBag interestRates = (DataBag)input.get(2);
/] ..
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 Then do some computation:

DataBag output = bagFactory.newDefaultBag();

for (Tuple interestTuple : interestRates) {
Double interest = (Double)interestTuple.get(0);

double monthlyPayment = computeMonthlyPayment (principal, numPayments,
interest);

output.add(tupleFactory.newTuple(monthlyPayment));
}
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 The UDF then gets applied

payments = FOREACH mortgage GENERATE MortgagePayment($0,$1,$2);

 Or, a bit more understandably

payments = FOREACH mortgage GENERATE
MortgagePayment (principal,num payments,interest rates);

ented For The Apache Foundation By
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 Later, the data is changes, and a field is prepended to
tuples in the interest_rates bag

mortgage = load 'mortgage.csv' using PigStorage('|"')
as (principal:double,
num payments:int,
interest rates: bag {tuple(wow change:double,interest rate:double)});

» The script happily continues to work, and the output data
begins to flow downstream, causing serious errors, later
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» Write the UDF to fetch arguments by name using the
schema
» AliasableEvalFunc can help

Double principal = getDouble(input, "principal");
Integer numPayments = getInteger(input, "num payments");
DataBag interestRates = getBag(input,"interest rates");

for (Tuple interestTuple : interestRates) {
Double interest = getDouble(interestTuple,
getPrefixedAliasName("interest rates”, "interest rate"));
// compute monthly payment...

}
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Other awesome things

 New and coming things

Functions for calculating entropy
OpenNLP wrappers

New and improved Sampling UDFs
Additional Bag UDFs

InHashSet

More...
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« Typically online websites have instrumented
services that collect events

 Events stored in an offline system (such as i —>

Hadoop) for later analysis

« Using events, can build dashboards with | Services J
metrics such as: T
« # of page views over last month | Evem: —
«  # of active users over last month el

* Metrics derived from events can also be useful ;
in recommendation pipelines Hadoop

 e.g. impression discounting



Event Storage

Events can be categorized into topics, for example:
* page view
e user login
» ad impression/click
Store events by topic and by day:
» /data/page_view/daily/2013/10/08
» /data/page_view/daily/2013/10/09
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Hourglass allows you to perform computation over specific time

windows of data stored in this format
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* In practice, many of computations over time
windows use either:

Fixed-start window Fixed-length window
Page Views /Day Page Views /Day
A latest A latest Total Page Views,
Newer Newer last 5 days

| Total Page Views, |
as of today Job L 1

- 4 days
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« But, frequently jobs re-compute these daily
 From one day to next, input changes little

 Fixed-start window

. Day n Day n+1
Includes one new day: . _
age Views /Day Page Views / Day
latest
A latest A
Newer New
| |
Olcli r O)L
v S v | start
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* Fixed-length window includes one new day, minus
oldest day

Day n Day n+1
Page Views / Day Page Views /Day
latest
A latest A
Newer Newer
I I Job
Job
| |
Old Older
A4 \
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« Suppose we must compute page view counts per member

 The job consumes all days of available input, producing one

Output. Input Output
* We call this a partition-collapsing job. Day 1
\
 But, if the job runs tomorrow it has Day2 “ﬂ[“”"'“ﬁ%"a“mg}—v traughn
to reprocess the same data. i
Dayn

‘ Page view counts
Page view events, per member

by day
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Improving Fixed-Start Computations
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« Solution: Merge new data with previous output

 We can do this because this is an arithmetic operation

* Hourglass provides a
partition-collapsing job that
supports output reuse.

Input

C_,

| __—

Day n+1

Page view events,
by day

Partition Collapsing
Job

I

Output

Days 1
through n

Days 1
through n+1

Page view counts
per member
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 When applied to a fixed-start window
computation:

Days
1 through n
Mapper
. . R
bll Identlty() }\\‘educer\‘
] -~ Days
merge() J “1 1 through n+1
Mappe
_»| accumulate
Day n+1 >! map() }'—"‘" [ 0
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« For a fixed-length job, can reuse output using a
similar trick:

Input Output

 Add new day to previous

Days 1
output o
{Pamtion CollapsingL
Job

* Subtract old day from result —— "

Days 2
through n+1
 We can subtract the old day —
Slnce thIS IS arlthmetlc Page view events, Page view counts
by day per member
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 When applied to a fixed-length window computation:

Days
1 through n
Mapper
»|  identity() }\\ Reduoer
\ merge( \
Mapper b 8
Day n+1 > mapl() |I >[ accumulate() v
f ] -~ Days
“““““ ge() ] > 2 through n+1
Mapper )
Day 1 =|| mapl() |I >[ accumulate()
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 But, for some operations, cannot subtract old data
« example: max(), min()

« Cannot reuse previous output, so how to reduce computation?

Partition Collapsing
Job

Prese or The Apache ation By
il LiNUX FOUMDA‘ "ION

Input Output

«  Solution: partition-preserving job

Day 1 Day 1

« Partitioned input data,

Partition Preserving
Job

Day2 Day2

« partitioned output data

aggregate the data in advance Da:yn
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Input Partitioner Output

Mapper

Day 1 mapl() }\\' Reducer Day 1
—_ /
Mapper

Day 2 map() I 4‘!— accumulate() I—-—\_) Day 2

Mapper

Day 3 { mapl() }\\ Reducer Day 3
\ /
Mapper

accumulate
Day 4 map() I—————’— ’! OI | Daya4
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 MapReduce is a fairly general programming model
* Hourglass requires:

* reduce() must output (key,value) pair
* reduce() must produce at most one value
* reduce() implemented by an accumulator

* Hourglass provides all the MapReduce boilerplate for
you for these types of jobs



Summary

* Two types of jobs:

Partition-preserving: consume partitioned
Input data, produce partitioned output data
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Partition-collapsing: consume partitioned

iInput data, produce single output



Summary

You provide:

Input: time range, input paths
Implement: map(), accumulate()

Optional: merge(), unmerge()
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Hourglass provides the rest to make it easier to

Implement jobs that incrementally process
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http://datafu.incubator.apache.org/
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