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Apache DataFu 
•  Apache DataFu is a collection of libraries for working with 

large-scale data in Hadoop. 
•  Currently consists of two libraries: 

•  DataFu Pig – a collection of Pig UDFs 
•  DataFu Hourglass – incremental processing 

•  Incubating 



History 
•  LinkedIn had a number of teams who had developed 

generally useful UDFs 
•  Problems: 

•  No centralized library 
•  No automated testing 

•  Solutions: 
•  Unit tests (PigUnit) 
•  Code coverage (Cobertura) 

•  Initially open-sourced 2011; 1.0 September, 2013 



What it’s all about 
•  Making it easier to work with large scale data 
•  Well-documented, well-tested code 

•  Easy to contribute 
•  Extensive documentation 
•  Getting started guide 
•  i.e. for DataFu Pig – it should be easy to add a UDF, 

add a test, ship it 



DataFu community 
•  People who use Hadoop for working with data 

•  Used extensively at LinkedIn 

•  Included in Cloudera’s CDH 
•  Included in Apache Bigtop 



DataFu - Pig 



DataFu Pig 
•  A collection of UDFs for data analysis covering: 

•  Statistics 
•  Bag Operations 
•  Set Operations 
•  Sessions 
•  Sampling 
•  General Utility 
•  And more.. 



Coalesce 
•  A common case:  replace null values with a default 

data = FOREACH data GENERATE (val IS NOT NULL ? val : 0) as result;!

data = FOREACH data GENERATE (val1 IS NOT NULL ? val1 : !
                             (val2 IS NOT NULL ? val2 : !
                             (val3 IS NOT NULL ? val3 : !
                                NULL))) as result; !

•  To return the first non-null value 



Coalesce 
•  Using Coalesce to set a default of zero 

•  It returns the first non-null value 

data = FOREACH data GENERATE Coalesce(val,0) as result;!

data = FOREACH data GENERATE Coalesce(val1,val2,val3) as result;!



Compute session statistics 

•  Suppose we have a website, and we want to see how 
long members spend browsing it 

•  We also want to know who are the most engaged 

•  Raw data is the click stream 

pv = LOAD 'pageviews.csv' USING PigStorage(',') !
     AS (memberId:int, time:long, url:chararray);!



Compute session statistics 

•  First, what is a session? 
•  Session = sustained user activity 
•  Session ends after 10 minutes of no activity 

DEFINE Sessionize  datafu.pig.sessions.Sessionize('10m');!

DEFINE UnixToISO   
org.apache.pig.piggybank.evaluation.datetime.convert.UnixToISO();!

•  Session expects ISO-formatted time 



Compute session statistics 

•  Sessionize appends a sessionId to each tuple 
•  All tuples in the same session get the same sessionId  

pv_sessionized = FOREACH (GROUP pv BY memberId) {!
  ordered = ORDER pv BY isoTime;!
  GENERATE FLATTEN(Sessionize(ordered)) !
           AS (isoTime, time, memberId, sessionId);!
};!
!
pv_sessionized = FOREACH pv_sessionized GENERATE !
                 sessionId, memberId, time;!



Compute session statistics 

•  Statistics: 
DEFINE Median   datafu.pig.stats.StreamingMedian();!
DEFINE Quantile datafu.pig.stats.StreamingQuantile('0.90','0.95');!
DEFINE VAR      datafu.pig.stats.VAR();!

•  You have your choice between streaming (approximate) 
and exact calculations (slower, require sorted input) 



Compute session statistics 

•  Computer the session length in minutes 
session_times = !
  FOREACH (GROUP pv_sessionized BY (sessionId,memberId))!
           GENERATE group.sessionId as sessionId,!
                    group.memberId as memberId,!
                    (MAX(pv_sessionized.time) - !
                     MIN(pv_sessionized.time))!
                     / 1000.0 / 60.0 as session_length;!



Compute session statistics 

•  Compute the statistics 
session_stats = FOREACH (GROUP session_times ALL) {!
  GENERATE!
    AVG(ordered.session_length) as avg_session,!
    SQRT(VAR(ordered.session_length)) as std_dev_session,!
    Median(ordered.session_length) as median_session,!
    Quantile(ordered.session_length) as quantiles_session;!
};!



Compute session statistics 

•  Find the most engaged users 
long_sessions = !
  filter session_times by !
    session_length >    !
    session_stats.quantiles_session.quantile_0_95;!
!
very_engaged_users = !
  DISTINCT (FOREACH long_sessions GENERATE memberId);!



Pig Bags 
•  Pig represents collections as a bag 
•  In PigLatin, the ways in which you can manipulate a bag 

are limited 
•  Working with an inner bag (inside a nested block) can be 

difficult 



DataFu Pig Bags 
•  DataFu provides a number of operations to let you 

transform bags 
•  AppendToBag – add a tuple to the end of a bag 
•  PrependToBag – add a tuple to the front of a bag 
•  BagConcat – combine two (or more) bags into one 
•  BagSplit – split one bag into multiples 



DataFu Pig Bags 
•  It also provides UDFs that let you operate on bags similar 

to how you might with relations 
•  BagGroup – group operation on a bag 
•  CountEach – count how many times a tuple appears 
•  BagLeftOuterJoin – join tuples in bags by key 



Counting Events 
•  Let’s consider a system where a user is recommended 

items of certain categories and can act to accept or reject 
these recommendations 
impressions = LOAD '$impressions' AS (user_id:int, item_id:int,  
   timestamp:long);!
accepts = LOAD '$accepts' AS (user_id:int, item_id:int, timestamp:long);!
rejects = LOAD '$rejects' AS (user_id:int, item_id:int, timestamp:long);!



Counting Events 
•  We want to know, for each user, how many times an item 

was shown, accepted and rejected 
features: {!
  user_id:int, !
  items:{(!
    item_id:int,           
    impression_count:int, !
    accept_count:int, !
    reject_count:int)}  
}!



Counting Events 
-- First cogroup!
features_grouped = COGROUP !
  impressions BY (user_id, item_id),  
  accepts BY (user_id, item_id), !
  rejects BY (user_id, item_id);!
-- Then count!
features_counted = FOREACH features_grouped GENERATE !
  FLATTEN(group) as (user_id, item_id),!
  COUNT_STAR(impressions) as impression_count,!
  COUNT_STAR(accepts) as accept_count,!
  COUNT_STAR(rejects) as reject_count;!
-- Then group again!
features = FOREACH (GROUP features_counted BY user_id) GENERATE !
  group as user_id,!
  features_counted.(item_id, impression_count, accept_count, reject_count)   !
    as items;!

One approach… 



Counting Events 
•  But it seems wasteful to have to group twice 

•  Even big data can get reasonably small once you start 
slicing and dicing it 

•  Want to consider one user at a time – that should be small 
enough to fit into memory 



Counting Events 
•  Another approach: Only group once 
•  Bag manipulation UDFs to avoid the extra mapreduce job 

DEFINE CountEach         datafu.pig.bags.CountEach('flatten');!
DEFINE BagLeftOuterJoin  datafu.pig.bags.BagLeftOuterJoin();!
DEFINE Coalesce          datafu.pig.util.Coalesce();!

•  CountEach – counts how many times a tuple appears in a 
bag 

•  BagLeftOuterJoin – performs a left outer join across 
multiple bags 



Counting Events 
features_grouped = COGROUP impressions BY user_id, accepts BY user_id, !
  rejects BY user_id;!
!
features_counted = FOREACH features_grouped GENERATE !
  group as user_id,!
  CountEach(impressions.item_id) as impressions,!
  CountEach(accepts.item_id) as accepts,!
  CountEach(rejects.item_id) as rejects;!
!
features_joined = FOREACH features_counted GENERATE!
  user_id,!
  BagLeftOuterJoin(!
    impressions, 'item_id',!
    accepts, 'item_id',!
    rejects, 'item_id'!
  ) as items;!

A DataFu approach… 



Counting Events 

features = FOREACH features_joined {!
  projected = FOREACH items GENERATE!
    impressions::item_id as item_id,!
    impressions::count as impression_count,!
    Coalesce(accepts::count, 0) as accept_count,!
    Coalesce(rejects::count, 0) as reject_count;!
  GENERATE user_id, projected as items;!
}!

•  Revisit Coalesce to give default values 



Sampling 

•  Suppose we only wanted to run our script on a sample of 
the previous input data 

•  We have a problem, because the cogroup is only going to 
work if we have the same key (user_id) in each relation 

impressions = LOAD '$impressions' AS (user_id:int, item_id:int,  
   item_category:int, timestamp:long);!
accepts = LOAD '$accepts' AS (user_id:int, item_id:int, timestamp:long);!
rejects = LOAD '$rejects' AS (user_id:int, item_id:int, timestamp:long);!



Sampling 

•  DataFu provides SampleByKey 
DEFINE SampleByKey datafu.pig.sampling.SampleByKey(’a_salt','0.01');!
!
impressions = FILTER impressions BY SampleByKey('user_id');!
accepts = FILTER impressions BY SampleByKey('user_id');!
rejects = FILTER rejects BY SampleByKey('user_id');!
features = FILTER features BY SampleByKey('user_id');!



Left outer joins 
•  Suppose we had three relations: 

•  And we wanted to do a left outer join on all three: 

input1 = LOAD 'input1' using PigStorage(',') AS (key:INT,val:INT);!
input2 = LOAD 'input2' using PigStorage(',') AS (key:INT,val:INT);!
input3 = LOAD 'input3' using PigStorage(',') AS (key:INT,val:INT);!

joined = JOIN input1 BY key LEFT, !
              input2 BY key,!
              input3 BY key;!
!

•  Unfortunately, this is not legal PigLatin 



Left outer joins 
•  Instead, you need to join twice: 

data1 = JOIN input1 BY key LEFT, input2 BY key;!
data2 = JOIN data1 BY input1::key LEFT, input3 BY key;!

•  This approach requires two MapReduce jobs, making it 
inefficient, as well as inelegant 



Left outer joins 
•  There is always cogroup: 

data1 = COGROUP input1 BY key, input2 BY key, input3 BY key;!
data2 = FOREACH data1 GENERATE!
  FLATTEN(input1), -- left join on this!
  FLATTEN((IsEmpty(input2) ? TOBAG(TOTUPLE((int)null,(int)null)) : input2)) !
      as (input2::key,input2::val),!
  FLATTEN((IsEmpty(input3) ? TOBAG(TOTUPLE((int)null,(int)null)) : input3)) !
      as (input3::key,input3::val);!

•  But, it’s cumbersome and error-prone 



Left outer joins 
•  So, we have EmptyBagToNullFields 

•  Cleaner, easier to use 

data1 = COGROUP input1 BY key, input2 BY key, input3 BY key;!
data2 = FOREACH data1 GENERATE!
  FLATTEN(input1), -- left join on this!
  FLATTEN(EmptyBagToNullFields(input2)),!
  FLATTEN(EmptyBagToNullFields(input3));!



Left outer joins 
•  Can turn it into a macro 

DEFINE left_outer_join(relation1, key1, relation2, key2, relation3, key3) 
returns joined {!
  cogrouped = COGROUP !
    $relation1 BY $key1, $relation2 BY $key2, $relation3 BY $key3;!
  $joined = FOREACH cogrouped GENERATE !
    FLATTEN($relation1), !
    FLATTEN(EmptyBagToNullFields($relation2)), !
    FLATTEN(EmptyBagToNullFields($relation3));!
}!

features = left_outer_join(input1, val1, input2, val2, input3, val3);!



Schema and aliases 
•  A common (bad) practice in Pig is to use positional notation 

to reference fields 
•  Hard to maintain 

•  Script is tightly coupled to order of fields in input 
•  Inserting a field in the beginning breaks things 

downstream 
•  UDFs can have this same problem 

•  Especially problematic because code is separated, so 
the dependency is not obvious 



Schema and aliases 
•  Suppose we are calculating monthly mortgage payments 

for various interest rates 
mortgage = load 'mortgage.csv' using PigStorage('|')!
as (principal:double,!
    num_payments:int,!
    interest_rates: bag {tuple(interest_rate:double)});!



Schema and aliases 
•  So, we write a UDF to compute the payments 
•  First, we need to get the input parameters: 

  @Override!
  public DataBag exec(Tuple input) throws IOException!
  {!
    Double principal = (Double)input.get(0);!
    Integer numPayments = (Integer)input.get(1);!
    DataBag interestRates = (DataBag)input.get(2);!
!
    // ...!



Schema and aliases 
•  Then do some computation: 

DataBag output = bagFactory.newDefaultBag();!
!
for (Tuple interestTuple : interestRates) {!
  Double interest = (Double)interestTuple.get(0);!
!
  double monthlyPayment = computeMonthlyPayment(principal, numPayments, !
                           interest);!
!
  output.add(tupleFactory.newTuple(monthlyPayment));!
}!



Schema and aliases 
•  The UDF then gets applied 

payments = FOREACH mortgage GENERATE MortgagePayment($0,$1,$2);!

payments = FOREACH mortgage GENERATE !
  MortgagePayment(principal,num_payments,interest_rates);!

•  Or, a bit more understandably 



Schema and aliases 
•  Later, the data is changes, and a field is prepended to 

tuples in the interest_rates bag 
mortgage = load 'mortgage.csv' using PigStorage('|')!
as (principal:double,!
    num_payments:int,!
    interest_rates: bag {tuple(wow_change:double,interest_rate:double)});!

•  The script happily continues to work, and the output data 
begins to flow downstream, causing serious errors, later 



Schema and aliases 
•  Write the UDF to fetch arguments by name using the 

schema 
•  AliasableEvalFunc can help 

 Double principal = getDouble(input,"principal");!
 Integer numPayments = getInteger(input,"num_payments");!
 DataBag interestRates = getBag(input,"interest_rates");!

for (Tuple interestTuple : interestRates) {!
  Double interest = getDouble(interestTuple, !
    getPrefixedAliasName("interest_rates”, "interest_rate"));!
  // compute monthly payment...!
}!



Other awesome things 

•  New and coming things 
•  Functions for calculating entropy 
•  OpenNLP wrappers 
•  New and improved Sampling UDFs 
•  Additional Bag UDFs 
•  InHashSet 
•  More… 



DataFu - Hourglass 



Event Collection 
•  Typically online websites have instrumented 

services that collect events 
•  Events stored in an offline system (such as 

Hadoop) for later analysis 
•  Using events, can build dashboards with 

metrics such as: 
•  # of page views over last month 
•  # of active users over last month 

•  Metrics derived from events can also be useful 
in recommendation pipelines 
•  e.g. impression discounting 



Event Storage 

•  Events can be categorized into topics, for example: 
•  page view 
•  user login 
•  ad impression/click 

•  Store events by topic and by day: 
•  /data/page_view/daily/2013/10/08 
•  /data/page_view/daily/2013/10/09 

•  Hourglass allows you to perform computation over specific time 
windows of data stored in this format 



Computation Over Time Windows 

•  In practice, many of computations over time 
windows use either: 



Recognizing Inefficiencies 

•  But, frequently jobs re-compute these daily 

•  From one day to next, input changes little 

•  Fixed-start window  
includes one new day: 



Recognizing Inefficiencies 

•  Fixed-length window includes one new day, minus 
oldest day 



Improving Fixed-Start Computations 

•  Suppose we must compute page view counts per member 

•  The job consumes all days of available input, producing one 
output. 

•  We call this a partition-collapsing job. 

•  But, if the job runs tomorrow it has  
to reprocess the same data. 



Improving Fixed-Start Computations 

•  Solution: Merge new data with previous output 

•  We can do this because this is an arithmetic operation 

•  Hourglass provides a  
partition-collapsing job that  
supports output reuse. 



Partition-Collapsing Job 
Architecture (Fixed-Start) 
•  When applied to a fixed-start window 

computation: 



Improving Fixed-Length Computations 

•  For a fixed-length job, can reuse output using a 
similar trick: 

•  Add new day to previous  
output 

•  Subtract old day from result 
•  We can subtract the old day  

since this is arithmetic 



Partition-Collapsing Job 
Architecture (Fixed-Length) 

•  When applied to a fixed-length window computation: 



Improving Fixed-Length Computations 

•  But, for some operations, cannot subtract old data 

•  example: max(), min() 

•  Cannot reuse previous output, so how to reduce computation? 

•  Solution: partition-preserving job 

•  Partitioned input data,  

•  partitioned output data 
•  aggregate the data in advance 



Partition-Preserving Job Architecture 



MapReduce in Hourglass 

•  MapReduce is a fairly general programming model 

•  Hourglass requires: 

•  reduce() must output (key,value) pair 
•  reduce() must produce at most one value 
•  reduce() implemented by an accumulator 

•  Hourglass provides all the MapReduce boilerplate for 
you for these types of jobs 

 



Summary 

•  Two types of jobs: 
•  Partition-preserving: consume partitioned 

input data, produce partitioned output data 
•  Partition-collapsing: consume partitioned 

input data, produce single output 



Summary 

•  You provide: 
•  Input: time range, input paths 
•  Implement: map(), accumulate() 

•  Optional: merge(), unmerge() 

•  Hourglass provides the rest to make it easier to 
implement jobs that incrementally process 



Questions? 

http://datafu.incubator.apache.org/ 


