
Apache DataFu (incubating)

William Vaughan
Staff Software Engineer, LinkedIn

www.linkedin.com/in/williamgvaughan

Apache DataFu
•  Apache DataFu is a collection of libraries for working with

large-scale data in Hadoop.
•  Currently consists of two libraries:

•  DataFu Pig – a collection of Pig UDFs
•  DataFu Hourglass – incremental processing

•  Incubating

History
•  LinkedIn had a number of teams who had developed

generally useful UDFs
•  Problems:

•  No centralized library
•  No automated testing

•  Solutions:
•  Unit tests (PigUnit)
•  Code coverage (Cobertura)

•  Initially open-sourced 2011; 1.0 September, 2013

What it’s all about
•  Making it easier to work with large scale data
•  Well-documented, well-tested code

•  Easy to contribute
•  Extensive documentation
•  Getting started guide
•  i.e. for DataFu Pig – it should be easy to add a UDF,

add a test, ship it

DataFu community
•  People who use Hadoop for working with data

•  Used extensively at LinkedIn

•  Included in Cloudera’s CDH
•  Included in Apache Bigtop

DataFu - Pig

DataFu Pig
•  A collection of UDFs for data analysis covering:

•  Statistics
•  Bag Operations
•  Set Operations
•  Sessions
•  Sampling
•  General Utility
•  And more..

Coalesce
•  A common case: replace null values with a default

data = FOREACH data GENERATE (val IS NOT NULL ? val : 0) as result;!

data = FOREACH data GENERATE (val1 IS NOT NULL ? val1 : !
 (val2 IS NOT NULL ? val2 : !
 (val3 IS NOT NULL ? val3 : !
 NULL))) as result; !

•  To return the first non-null value

Coalesce
•  Using Coalesce to set a default of zero

•  It returns the first non-null value

data = FOREACH data GENERATE Coalesce(val,0) as result;!

data = FOREACH data GENERATE Coalesce(val1,val2,val3) as result;!

Compute session statistics

•  Suppose we have a website, and we want to see how
long members spend browsing it

•  We also want to know who are the most engaged

•  Raw data is the click stream

pv = LOAD 'pageviews.csv' USING PigStorage(',') !
 AS (memberId:int, time:long, url:chararray);!

Compute session statistics

•  First, what is a session?
•  Session = sustained user activity
•  Session ends after 10 minutes of no activity

DEFINE Sessionize datafu.pig.sessions.Sessionize('10m');!

DEFINE UnixToISO
org.apache.pig.piggybank.evaluation.datetime.convert.UnixToISO();!

•  Session expects ISO-formatted time

Compute session statistics

•  Sessionize appends a sessionId to each tuple
•  All tuples in the same session get the same sessionId

pv_sessionized = FOREACH (GROUP pv BY memberId) {!
 ordered = ORDER pv BY isoTime;!
 GENERATE FLATTEN(Sessionize(ordered)) !
 AS (isoTime, time, memberId, sessionId);!
};!
!
pv_sessionized = FOREACH pv_sessionized GENERATE !
 sessionId, memberId, time;!

Compute session statistics

•  Statistics:
DEFINE Median datafu.pig.stats.StreamingMedian();!
DEFINE Quantile datafu.pig.stats.StreamingQuantile('0.90','0.95');!
DEFINE VAR datafu.pig.stats.VAR();!

•  You have your choice between streaming (approximate)
and exact calculations (slower, require sorted input)

Compute session statistics

•  Computer the session length in minutes
session_times = !
 FOREACH (GROUP pv_sessionized BY (sessionId,memberId))!
 GENERATE group.sessionId as sessionId,!
 group.memberId as memberId,!
 (MAX(pv_sessionized.time) - !
 MIN(pv_sessionized.time))!
 / 1000.0 / 60.0 as session_length;!

Compute session statistics

•  Compute the statistics
session_stats = FOREACH (GROUP session_times ALL) {!
 GENERATE!
 AVG(ordered.session_length) as avg_session,!
 SQRT(VAR(ordered.session_length)) as std_dev_session,!
 Median(ordered.session_length) as median_session,!
 Quantile(ordered.session_length) as quantiles_session;!
};!

Compute session statistics

•  Find the most engaged users
long_sessions = !
 filter session_times by !
 session_length > !
 session_stats.quantiles_session.quantile_0_95;!
!
very_engaged_users = !
 DISTINCT (FOREACH long_sessions GENERATE memberId);!

Pig Bags
•  Pig represents collections as a bag
•  In PigLatin, the ways in which you can manipulate a bag

are limited
•  Working with an inner bag (inside a nested block) can be

difficult

DataFu Pig Bags
•  DataFu provides a number of operations to let you

transform bags
•  AppendToBag – add a tuple to the end of a bag
•  PrependToBag – add a tuple to the front of a bag
•  BagConcat – combine two (or more) bags into one
•  BagSplit – split one bag into multiples

DataFu Pig Bags
•  It also provides UDFs that let you operate on bags similar

to how you might with relations
•  BagGroup – group operation on a bag
•  CountEach – count how many times a tuple appears
•  BagLeftOuterJoin – join tuples in bags by key

Counting Events
•  Let’s consider a system where a user is recommended

items of certain categories and can act to accept or reject
these recommendations
impressions = LOAD '$impressions' AS (user_id:int, item_id:int,  
 timestamp:long);!
accepts = LOAD '$accepts' AS (user_id:int, item_id:int, timestamp:long);!
rejects = LOAD '$rejects' AS (user_id:int, item_id:int, timestamp:long);!

Counting Events
•  We want to know, for each user, how many times an item

was shown, accepted and rejected
features: {!
 user_id:int, !
 items:{(!
 item_id:int,  
 impression_count:int, !
 accept_count:int, !
 reject_count:int)}  
}!

Counting Events
-- First cogroup!
features_grouped = COGROUP !
 impressions BY (user_id, item_id),  
 accepts BY (user_id, item_id), !
 rejects BY (user_id, item_id);!
-- Then count!
features_counted = FOREACH features_grouped GENERATE !
 FLATTEN(group) as (user_id, item_id),!
 COUNT_STAR(impressions) as impression_count,!
 COUNT_STAR(accepts) as accept_count,!
 COUNT_STAR(rejects) as reject_count;!
-- Then group again!
features = FOREACH (GROUP features_counted BY user_id) GENERATE !
 group as user_id,!
 features_counted.(item_id, impression_count, accept_count, reject_count) !
 as items;!

One approach…

Counting Events
•  But it seems wasteful to have to group twice

•  Even big data can get reasonably small once you start
slicing and dicing it

•  Want to consider one user at a time – that should be small
enough to fit into memory

Counting Events
•  Another approach: Only group once
•  Bag manipulation UDFs to avoid the extra mapreduce job

DEFINE CountEach datafu.pig.bags.CountEach('flatten');!
DEFINE BagLeftOuterJoin datafu.pig.bags.BagLeftOuterJoin();!
DEFINE Coalesce datafu.pig.util.Coalesce();!

•  CountEach – counts how many times a tuple appears in a
bag

•  BagLeftOuterJoin – performs a left outer join across
multiple bags

Counting Events
features_grouped = COGROUP impressions BY user_id, accepts BY user_id, !
 rejects BY user_id;!
!
features_counted = FOREACH features_grouped GENERATE !
 group as user_id,!
 CountEach(impressions.item_id) as impressions,!
 CountEach(accepts.item_id) as accepts,!
 CountEach(rejects.item_id) as rejects;!
!
features_joined = FOREACH features_counted GENERATE!
 user_id,!
 BagLeftOuterJoin(!
 impressions, 'item_id',!
 accepts, 'item_id',!
 rejects, 'item_id'!
) as items;!

A DataFu approach…

Counting Events

features = FOREACH features_joined {!
 projected = FOREACH items GENERATE!
 impressions::item_id as item_id,!
 impressions::count as impression_count,!
 Coalesce(accepts::count, 0) as accept_count,!
 Coalesce(rejects::count, 0) as reject_count;!
 GENERATE user_id, projected as items;!
}!

•  Revisit Coalesce to give default values

Sampling

•  Suppose we only wanted to run our script on a sample of
the previous input data

•  We have a problem, because the cogroup is only going to
work if we have the same key (user_id) in each relation

impressions = LOAD '$impressions' AS (user_id:int, item_id:int,  
 item_category:int, timestamp:long);!
accepts = LOAD '$accepts' AS (user_id:int, item_id:int, timestamp:long);!
rejects = LOAD '$rejects' AS (user_id:int, item_id:int, timestamp:long);!

Sampling

•  DataFu provides SampleByKey
DEFINE SampleByKey datafu.pig.sampling.SampleByKey(’a_salt','0.01');!
!
impressions = FILTER impressions BY SampleByKey('user_id');!
accepts = FILTER impressions BY SampleByKey('user_id');!
rejects = FILTER rejects BY SampleByKey('user_id');!
features = FILTER features BY SampleByKey('user_id');!

Left outer joins
•  Suppose we had three relations:

•  And we wanted to do a left outer join on all three:

input1 = LOAD 'input1' using PigStorage(',') AS (key:INT,val:INT);!
input2 = LOAD 'input2' using PigStorage(',') AS (key:INT,val:INT);!
input3 = LOAD 'input3' using PigStorage(',') AS (key:INT,val:INT);!

joined = JOIN input1 BY key LEFT, !
 input2 BY key,!
 input3 BY key;!
!

•  Unfortunately, this is not legal PigLatin

Left outer joins
•  Instead, you need to join twice:

data1 = JOIN input1 BY key LEFT, input2 BY key;!
data2 = JOIN data1 BY input1::key LEFT, input3 BY key;!

•  This approach requires two MapReduce jobs, making it
inefficient, as well as inelegant

Left outer joins
•  There is always cogroup:

data1 = COGROUP input1 BY key, input2 BY key, input3 BY key;!
data2 = FOREACH data1 GENERATE!
 FLATTEN(input1), -- left join on this!
 FLATTEN((IsEmpty(input2) ? TOBAG(TOTUPLE((int)null,(int)null)) : input2)) !
 as (input2::key,input2::val),!
 FLATTEN((IsEmpty(input3) ? TOBAG(TOTUPLE((int)null,(int)null)) : input3)) !
 as (input3::key,input3::val);!

•  But, it’s cumbersome and error-prone

Left outer joins
•  So, we have EmptyBagToNullFields

•  Cleaner, easier to use

data1 = COGROUP input1 BY key, input2 BY key, input3 BY key;!
data2 = FOREACH data1 GENERATE!
 FLATTEN(input1), -- left join on this!
 FLATTEN(EmptyBagToNullFields(input2)),!
 FLATTEN(EmptyBagToNullFields(input3));!

Left outer joins
•  Can turn it into a macro

DEFINE left_outer_join(relation1, key1, relation2, key2, relation3, key3)
returns joined {!
 cogrouped = COGROUP !
 $relation1 BY $key1, $relation2 BY $key2, $relation3 BY $key3;!
 $joined = FOREACH cogrouped GENERATE !
 FLATTEN($relation1), !
 FLATTEN(EmptyBagToNullFields($relation2)), !
 FLATTEN(EmptyBagToNullFields($relation3));!
}!

features = left_outer_join(input1, val1, input2, val2, input3, val3);!

Schema and aliases
•  A common (bad) practice in Pig is to use positional notation

to reference fields
•  Hard to maintain

•  Script is tightly coupled to order of fields in input
•  Inserting a field in the beginning breaks things

downstream
•  UDFs can have this same problem

•  Especially problematic because code is separated, so
the dependency is not obvious

Schema and aliases
•  Suppose we are calculating monthly mortgage payments

for various interest rates
mortgage = load 'mortgage.csv' using PigStorage('|')!
as (principal:double,!
 num_payments:int,!
 interest_rates: bag {tuple(interest_rate:double)});!

Schema and aliases
•  So, we write a UDF to compute the payments
•  First, we need to get the input parameters:

 @Override!
 public DataBag exec(Tuple input) throws IOException!
 {!
 Double principal = (Double)input.get(0);!
 Integer numPayments = (Integer)input.get(1);!
 DataBag interestRates = (DataBag)input.get(2);!
!
 // ...!

Schema and aliases
•  Then do some computation:

DataBag output = bagFactory.newDefaultBag();!
!
for (Tuple interestTuple : interestRates) {!
 Double interest = (Double)interestTuple.get(0);!
!
 double monthlyPayment = computeMonthlyPayment(principal, numPayments, !
 interest);!
!
 output.add(tupleFactory.newTuple(monthlyPayment));!
}!

Schema and aliases
•  The UDF then gets applied

payments = FOREACH mortgage GENERATE MortgagePayment($0,$1,$2);!

payments = FOREACH mortgage GENERATE !
 MortgagePayment(principal,num_payments,interest_rates);!

•  Or, a bit more understandably

Schema and aliases
•  Later, the data is changes, and a field is prepended to

tuples in the interest_rates bag
mortgage = load 'mortgage.csv' using PigStorage('|')!
as (principal:double,!
 num_payments:int,!
 interest_rates: bag {tuple(wow_change:double,interest_rate:double)});!

•  The script happily continues to work, and the output data
begins to flow downstream, causing serious errors, later

Schema and aliases
•  Write the UDF to fetch arguments by name using the

schema
•  AliasableEvalFunc can help

 Double principal = getDouble(input,"principal");!
 Integer numPayments = getInteger(input,"num_payments");!
 DataBag interestRates = getBag(input,"interest_rates");!

for (Tuple interestTuple : interestRates) {!
 Double interest = getDouble(interestTuple, !
 getPrefixedAliasName("interest_rates”, "interest_rate"));!
 // compute monthly payment...!
}!

Other awesome things

•  New and coming things
•  Functions for calculating entropy
•  OpenNLP wrappers
•  New and improved Sampling UDFs
•  Additional Bag UDFs
•  InHashSet
•  More…

DataFu - Hourglass

Event Collection
•  Typically online websites have instrumented

services that collect events
•  Events stored in an offline system (such as

Hadoop) for later analysis
•  Using events, can build dashboards with

metrics such as:
•  # of page views over last month
•  # of active users over last month

•  Metrics derived from events can also be useful
in recommendation pipelines
•  e.g. impression discounting

Event Storage

•  Events can be categorized into topics, for example:
•  page view
•  user login
•  ad impression/click

•  Store events by topic and by day:
•  /data/page_view/daily/2013/10/08
•  /data/page_view/daily/2013/10/09

•  Hourglass allows you to perform computation over specific time
windows of data stored in this format

Computation Over Time Windows

•  In practice, many of computations over time
windows use either:

Recognizing Inefficiencies

•  But, frequently jobs re-compute these daily

•  From one day to next, input changes little

•  Fixed-start window
includes one new day:

Recognizing Inefficiencies

•  Fixed-length window includes one new day, minus
oldest day

Improving Fixed-Start Computations

•  Suppose we must compute page view counts per member

•  The job consumes all days of available input, producing one
output.

•  We call this a partition-collapsing job.

•  But, if the job runs tomorrow it has
to reprocess the same data.

Improving Fixed-Start Computations

•  Solution: Merge new data with previous output

•  We can do this because this is an arithmetic operation

•  Hourglass provides a
partition-collapsing job that
supports output reuse.

Partition-Collapsing Job
Architecture (Fixed-Start)
•  When applied to a fixed-start window

computation:

Improving Fixed-Length Computations

•  For a fixed-length job, can reuse output using a
similar trick:

•  Add new day to previous
output

•  Subtract old day from result
•  We can subtract the old day

since this is arithmetic

Partition-Collapsing Job
Architecture (Fixed-Length)

•  When applied to a fixed-length window computation:

Improving Fixed-Length Computations

•  But, for some operations, cannot subtract old data

•  example: max(), min()

•  Cannot reuse previous output, so how to reduce computation?

•  Solution: partition-preserving job

•  Partitioned input data,

•  partitioned output data
•  aggregate the data in advance

Partition-Preserving Job Architecture

MapReduce in Hourglass

•  MapReduce is a fairly general programming model

•  Hourglass requires:

•  reduce() must output (key,value) pair
•  reduce() must produce at most one value
•  reduce() implemented by an accumulator

•  Hourglass provides all the MapReduce boilerplate for
you for these types of jobs

Summary

•  Two types of jobs:
•  Partition-preserving: consume partitioned

input data, produce partitioned output data
•  Partition-collapsing: consume partitioned

input data, produce single output

Summary

•  You provide:
•  Input: time range, input paths
•  Implement: map(), accumulate()

•  Optional: merge(), unmerge()

•  Hourglass provides the rest to make it easier to
implement jobs that incrementally process

Questions?

http://datafu.incubator.apache.org/

