
Monitoring Tomcat with JMXMonitoring Tomcat with JMX

Christopher Schultz
Chief Technology Offcer
Total Child Health, Inc.

Christopher Schultz
Chief Technology Offcer
Total Child Health, Inc.

* Slides available on the Linux Foundation / ApacheCon2014 web site and at
http://people.apache.org/~schultz/ApacheCon NA 2014/Tomcat Monitoring/

Java Management ExtensionsJava Management Extensions

● Protocol and API for managing and monitoring
– Access data via JMX “Mbeans”
– Read and write bean attributes
– Invoke operations
– Receive notifications

● JVM exposes certain status
● Tomcat exposes certain status

● Protocol and API for managing and monitoring
– Access data via JMX “Mbeans”
– Read and write bean attributes
– Invoke operations
– Receive notifications

● JVM exposes certain status
● Tomcat exposes certain status

Monitoring JVMMonitoring JVM

● Heap status
● Total, free, used memory
● Garbage collection
● GC pause times

● Heap status
● Total, free, used memory
● Garbage collection
● GC pause times

Monitoring TomcatMonitoring Tomcat

● Status of connector
● Status of request-processor thread pool
● Status of data sources
● Request performance

● Status of connector
● Status of request-processor thread pool
● Status of data sources
● Request performance

JMX ToolsJMX Tools

● jconsole (JDK)
● VisualVM (JDK, app bundle)
● Most profilers (e.g. YourKit, etc.)
● Custom tools using javax.management API

● jconsole (JDK)
● VisualVM (JDK, app bundle)
● Most profilers (e.g. YourKit, etc.)
● Custom tools using javax.management API

Monitoring JVM: HeapMonitoring JVM: Heap

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Monitoring Tomcat: RequestsMonitoring Tomcat: Requests

Monitoring Tomcat: RequestsMonitoring Tomcat: Requests

Monitoring Tomcat: RequestsMonitoring Tomcat: Requests

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Monitoring Tomcat: SessionsMonitoring Tomcat: Sessions

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Monitoring Tomcat: DataSourcesMonitoring Tomcat: DataSources

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Monitoring Tomcat: ThreadsMonitoring Tomcat: Threads

Monitoring Tomcat: ThreadsMonitoring Tomcat: Threads

Monitoring Tomcat: ThreadsMonitoring Tomcat: Threads

Monitoring Tomcat: ThreadsMonitoring Tomcat: Threads

Monitoring Your ApplicationMonitoring Your Application
● Monitor Application Processes
● Performance Metrics
● On-the-fly re-configuration

● Monitor Application Processes
● Performance Metrics
● On-the-fly re-configuration

Monitoring Your ApplicationMonitoring Your Application
● Write an MBean

– Create an Interface: FooMBean
– Create an Implementation: Foo
– Create an XML MBean descriptor

● Deploy package to Tomcat
– Publish the MBean to the MBean server

● Query / invoke as necessary

* Example code will be available at
http://people.apache.org/~schultz/ApacheCon NA 2014/Tomcat Monitoring/

Example MBeanExample MBean
● Servlet Filter that captures total request

processing time
– Timestamp prior to request
– Timestamp after request
– Add the delta to a JMX-accessible counter:

RequestStats

RequestStats MBeanRequestStats MBean
● Write an MBean

public interface RequestStatsMBean {
 public long getProcessingTime();
 public long getRequestCount();
 public void resetCounters();
}
public class RequestStats
 implements RequestStatsMBean {
 [...]
 public void updateStats(long
timestamp, ServletRequest request, long
elapsed) {

_totalElapsedTime.addAndGet(elapsed);

_requestCount.incrementAndGet();
 }

 public long getProcessingTime(){
 return _totalElapsedTime.get();
 }
 public long getRequestCount() {
 return _requestCount.get();
 }
 public void resetCounters() {
 _totalElapsedTime.set(0l);
 _requestCount.set(0l);
 }
}

RequestStats MBeanRequestStats MBean
● Write an MBean descriptor

<mbeans-descriptors>
 <mbean name="RequestStats" ...>
 <operation name="getProcessingTime"
 description="Gets the total number of
milliseconds spent processing requests."
 impact="INFO"
 returnType="long" />
 <operation name="getRequestCount"
 description="Gets the total number
of requests processed."
 impact="INFO"
 returnType="long" />

 <operation
 name="resetCounters"
 description="Resets all
counters."
 impact="ACTION"
 returnType="void" />
 </mbean>
</mbeans-descriptors>

RequestStats MBeanRequestStats MBean
● Create JAR

– Java interface
– Java implementation
– mbeans-descriptors.xml

● Put JAR into CATALINA_BASE/lib

● Create JAR
– Java interface
– Java implementation
– mbeans-descriptors.xml

● Put JAR into CATALINA_BASE/lib

RequestStats MBeanRequestStats MBean
● Write the Filter

 public void init(FilterConfig config) {
 MBeanServer server = getServer();
 server.registerMBean(_stats, new
ObjectName("Example:RequestStats=RequestStats,name=" + filterName;));
 }
 public void doFilter(...) {
 timestamp = elapsed = System.currentTimeMillis();
 chain.doFilter(request, response);
 elapsed = System.currentTimeMillis() - elapsed;

 _stats.updateStats(timestamp, request, elapsed);
 }

RequestStats MBeanRequestStats MBean
● Map the Filter
 <filter>
 <filter-name>servlet-request-stats</filter-name>
 <filter-class>filters.RequestStatsFilter</filter-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>servlets</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>servlet-request-stats</filter-name>
 <url-pattern>/servlets/*</url-pattern>
 </filter-mapping>
 <filter><filter-name>jsp-request-stats</filter-name><filter-
class>filters.RequestStatsFilter</filter-class><init-param><param-name>name</param-
name><param-value>jsps</param-value></init-param></filter>
 <filter-mapping><filter-name>jsp-request-stats</filter-name><url-pattern>/jsp/*</url-
pattern></filter-mapping>

● Map the Filter
 <filter>
 <filter-name>servlet-request-stats</filter-name>
 <filter-class>filters.RequestStatsFilter</filter-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>servlets</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>servlet-request-stats</filter-name>
 <url-pattern>/servlets/*</url-pattern>
 </filter-mapping>
 <filter><filter-name>jsp-request-stats</filter-name><filter-
class>filters.RequestStatsFilter</filter-class><init-param><param-name>name</param-
name><param-value>jsps</param-value></init-param></filter>
 <filter-mapping><filter-name>jsp-request-stats</filter-name><url-pattern>/jsp/*</url-
pattern></filter-mapping>

RequestStats MBeanRequestStats MBean

RequestStats MBeanRequestStats MBean

Automated MonitoringAutomated Monitoring

● Remote Access
● Large Scale
● Constant

● Remote Access
● Large Scale
● Constant

Automated MonitoringAutomated Monitoring

● Remote Access
● Large Scale
● Constant
● Need more tools!

● Remote Access
● Large Scale
● Constant
● Need more tools!

Automated MonitoringAutomated Monitoring

● Nagios
– S imple
– Flexible
– Well-deployed
– No-cost community version available

● Nagios
– Simple
– Flexible
– Well-deployed
– No-cost community version available

Automated MonitoringAutomated Monitoring

Nagios MonitoringNagios Monitoring

● Plug-in architecture (i.e. arbitrary scripts)
● Freely-available JMX plug-in: check_jmx
$./check_jmx -U
service:jmx:rmi:///jndi/rmi://localhost:1100/jmxrmi\

 -O java.lang:type=Memory -A NonHeapMemoryUsage -K used\

 -w 29000000 -c 30000000

JMX WARNING NonHeapMemoryUsage.used=29050880

● Plug-in architecture (i.e. arbitrary scripts)
● Freely-available JMX plug-in: check_jmx
$./check_jmx -U
service:jmx:rmi:///jndi/rmi://localhost:1100/jmxrmi\

 -O java.lang:type=Memory -A NonHeapMemoryUsage -K used\

 -w 29000000 -c 30000000

JMX WARNING NonHeapMemoryUsage.used=29050880

Nagios MonitoringNagios Monitoring

● Problems with check_jmx
– Complex configuration for remote JMX
– JVM launch for every check
– Course-grained authentication options

● Problems with check_jmx
– Complex configuration for remote JMX
– JVM launch for every check
– Course-grained authentication options

Nagios MonitoringNagios Monitoring

● Alternative Option: Tomcat's JMXProxyServlet
– JMX data available via HTTP
– Can use Tomcat's authentication tools

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' \
 -w 29000000 -c 30000000
JMX CRITICAL: OK - Attribute get 'java.lang:type=Memory' -
HeapMemoryUsage - key 'used' = 100875248

● Alternative Option: Tomcat's JMXProxyServlet
– JMX data available via HTTP
– Can use Tomcat's authentication tools

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' \
 -w 29000000 -c 30000000
JMX CRITICAL: OK - Attribute get 'java.lang:type=Memory' -
HeapMemoryUsage - key 'used' = 100875248

* check_jmxproxy can be found at
http://wiki.apache.org/tomcat/tools/check_jmxproxy.pl

Nagios MonitoringNagios Monitoring

JMX Command-line TricksJMX Command-line Tricks
● Show all logged-in usernames
for sessionid in `wget -O - 'http://user:pwd@host/manager/jmxproxy?
invoke=Catalina:type=Manager,context=/myapp,host=localhost&op=listSessionI
ds' \

 | sed -e "s/ /\n/g"

 | grep '^[0-9A-Za-z]\+\(\..*\)\?$' ;\

do wget -O – "http://user:pwd@host/manager/jmxproxy?
invoke=Catalina:type=Manager,context=/myapp,host=localhost&op=getSessionAt
tribute&ps=$sessionid,user" ; done 2>/dev/null \

 | grep User

● Show all logged-in usernames
for sessionid in `wget -O - 'http://user:pwd@host/manager/jmxproxy?
invoke=Catalina:type=Manager,context=/myapp,host=localhost&op=listSessionI
ds' \

 | sed -e "s/ /\n/g"

 | grep '^[0-9A-Za-z]\+\(\..*\)\?$' ;\

do wget -O – "http://user:pwd@host/manager/jmxproxy?
invoke=Catalina:type=Manager,context=/myapp,host=localhost&op=getSessionAt
tribute&ps=$sessionid,user" ; done 2>/dev/null \

 | grep User

Tracking Values Over TimeTracking Values Over Time
● Some metrics are best observed as deltas

– Session count
– Request error count

● Requires that you have a history of data
● Requires that you consult the history of that data
● check_jmxproxy provides such capabilities

● Some metrics are best observed as deltas
– Session count
– Request error count

● Requires that you have a history of data
● Requires that you consult the history of that data
● check_jmxproxy provides such capabilities

Tracking Values Over TimeTracking Values Over Time
$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 102278904,
delta=[...]

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 113806144,
delta=11527240

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 109264056,
delta=-4542088

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 102278904,
delta=[...]

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 113806144,
delta=11527240

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 109264056,
delta=-4542088

Tracking Values Over TimeTracking Values Over Time
● Session count

– Tomcat actually provides this already via Manager's
sessionCreateRate attribute

● Request errors
$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=Catalina:type=RequestProcessor,worker="http-nio-127.0.0.1-
8217",name=HttpRequest1&att=errorCount' -w 1 -c 10 --write errors.txt --compare
errors.txt

JMX OK: OK - Attribute get 'Catalina:type=RequestProcessor,worker="http-nio-
127.0.0.1-8217",name=HttpRequest1' - errorCount = 0, delta=0

● Session count
– Tomcat actually provides this already via Manager's
sessionCreateRate attribute

● Request errors
$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=Catalina:type=RequestProcessor,worker="http-nio-127.0.0.1-
8217",name=HttpRequest1&att=errorCount' -w 1 -c 10 --write errors.txt --compare
errors.txt

JMX OK: OK - Attribute get 'Catalina:type=RequestProcessor,worker="http-nio-
127.0.0.1-8217",name=HttpRequest1' - errorCount = 0, delta=0

Detecting OutOfMemoryDetecting OutOfMemory
● Many sources of OOME

– Heap exhaustion
– PermGen exhaustion
– Hit thread limit
– Hit file descriptor limit

● Many sources of OOME
– Heap exhaustion
– PermGen exhaustion
– Hit thread limit
– Hit file descriptor limit

Detecting OutOfMemoryDetecting OutOfMemory
● Two types of heap OOME

– One thread generates lots of local references
– All threads collaborate to generate globally-

reachable objects (e.g. session data)
● Former is recoverable, latter is not
● You want to be notified in any case

● Two types of heap OOME
– One thread generates lots of local references
– All threads collaborate to generate globally-

reachable objects (e.g. session data)
● Former is recoverable, latter is not
● You want to be notified in any case

Memory Pool ThresholdsMemory Pool Thresholds

Memory Pool ThresholdsMemory Pool Thresholds

Memory Pool ThresholdsMemory Pool Thresholds

Memory Pool ThresholdsMemory Pool Thresholds

Memory Pool ThresholdsMemory Pool Thresholds
● Choice of how to detect exceeded-

threshold conditions
– Polling using check_jmxproxy
– Register a notification listener from Java

● Have that listener take some action

● Choice of how to detect exceeded-
threshold conditions
– Polling using check_jmxproxy
– Register a notification listener from Java

● Have that listener take some action

Detect OutOfMemoryDetect OutOfMemory
● Monitoring Memory Thresholds

– Set threshold on startup
– Register a notification listener (callback)
– Watch “exceeded” count (poll)
– Report to monitoring software (Nagios)
– Repeat for each memory pool you want to watch
– Hope the JVM does not fail during notification
– This is getting ridiculous

● Monitoring Memory Thresholds
– Set threshold on startup
– Register a notification listener (callback)
– Watch “exceeded” count (poll)
– Report to monitoring software (Nagios)
– Repeat for each memory pool you want to watch
– Hope the JVM does not fail during notification
– This is getting ridiculous

Detecting OutOfMemoryDetecting OutOfMemory
● JVM has an easier way
● Use -XX:OnOutOfMemoryError to run a

command on first OOME detected by the
JVM

● Need a command to notify Nagios

● JVM has an easier way
● Use -XX:OnOutOfMemoryError to run a

command on first OOME detected by the
JVM

● Need a command to notify Nagios

Notify Nagios on OOMENotify Nagios on OOME
● Script that wraps curl
$ curl -si \

 --data-urlencode 'cmd_typ=30' \

 --data-urlencode 'cmd_mod=2' \

 --data-urlencode "host=myhost" \

 --data-urlencode "service=JVM:Heap:OOME" \

 --data-urlencode "plugin_state=2" \

 --data-urlencode "plugin_output=OOME CRITICAL" \

 'https://monitoring-host/nagios/cgi-bin/cmd.cgi'

● Script that wraps curl
$ curl -si \

 --data-urlencode 'cmd_typ=30' \

 --data-urlencode 'cmd_mod=2' \

 --data-urlencode "host=myhost" \

 --data-urlencode "service=JVM:Heap:OOME" \

 --data-urlencode "plugin_state=2" \

 --data-urlencode "plugin_output=OOME CRITICAL" \

 'https://monitoring-host/nagios/cgi-bin/cmd.cgi'

Script can be found at http://wiki.apache.org/tomcat/tools/nagios-send-passive-
check.sh

Monitoring Tomcat with JMXMonitoring Tomcat with JMX
● JMX Provides Monitoring and Management of JVMs
● Tomcat exposes a great amount of information via JMX
● Applications can expose anything to JMX via MBeans
● JRE ships with tools for light JMX interaction
● Practical use of JMX requires some additional tools

● JMX Provides Monitoring and Management of JVMs
● Tomcat exposes a great amount of information via JMX
● Applications can expose anything to JMX via MBeans
● JRE ships with tools for light JMX interaction
● Practical use of JMX requires some additional tools

ResourcesResources
● Presentation Slides

http://people.apache.org/~schultz/ApacheCon NA 2014/Tomcat Monitoring/

● Nagios passive-check script
http://wiki.apache.org/tomcat/tools/nagios-send-passive-check.sh

● check_jmxproxy
http://wiki.apache.org/tomcat/tools/check_jmxproxy.pl

● Special thanks to Christopher Blunck (MBeans info)
http://oss.wxnet.org/mbeans.html

● Presentation Slides
http://people.apache.org/~schultz/ApacheCon NA 2014/Tomcat Monitoring/

● Nagios passive-check script
http://wiki.apache.org/tomcat/tools/nagios-send-passive-check.sh

● check_jmxproxy
http://wiki.apache.org/tomcat/tools/check_jmxproxy.pl

● Special thanks to Christopher Blunck (MBeans info)
http://oss.wxnet.org/mbeans.html

Monitoring Tomcat with JMXMonitoring Tomcat with JMX

Christopher Schultz
Chief Technology Offcer
Total Child Health, Inc.

Christopher Schultz
Chief Technology Offcer
Total Child Health, Inc.

* Slides available on the Linux Foundation / ApacheCon2014 web site and at
http://people.apache.org/~schultz/ApacheCon NA 2014/Tomcat Monitoring/

I'm essentially a DevOps CTO, and everything I'm
presenting today has been something I've had to do
in my own work in that regard. My own monitoring
work is very much a work in progress.

This is an introduction to monitoring Tomcat and
even JVM processes in general. Nothing I'm going to
present is particularly earth-shattering or difficult to
understand. And that's good news!

There is really no need to consider why monitoring is
necessary, so let's just jump right in.

I'm essentially a DevOps CTO, and everything I'm
presenting today has been something I've had to do
in my own work in that regard. My own monitoring
work is very much a work in progress.

This is an introduction to monitoring Tomcat and
even JVM processes in general. Nothing I'm going to
present is particularly earth-shattering or difficult to
understand. And that's good news!

There is really no need to consider why monitoring is
necessary, so let's just jump right in.

Java Management ExtensionsJava Management Extensions

● Protocol and API for managing and monitoring
– Access data via JMX “Mbeans”
– Read and write bean attributes
– Invoke operations
– Receive notifications

● JVM exposes certain status
● Tomcat exposes certain status

● Protocol and API for managing and monitoring
– Access data via JMX “Mbeans”
– Read and write bean attributes
– Invoke operations
– Receive notifications

● JVM exposes certain status
● Tomcat exposes certain status

Manage and monitor JVM processes.
Everything is MBeans
Read/write attributes
Invoke operations
Receive notifications
Both the JVM and Tomcat expose these types of
things via JMX.

Manage and monitor JVM processes.
Everything is MBeans
Read/write attributes
Invoke operations
Receive notifications
Both the JVM and Tomcat expose these types of
things via JMX.

Monitoring JVMMonitoring JVM

● Heap status
● Total, free, used memory
● Garbage collection
● GC pause times

● Heap status
● Total, free, used memory
● Garbage collection
● GC pause times

The JVM exposes a lot about its internal state. Here
are some of the more interesting items.
The JVM exposes a lot about its internal state. Here
are some of the more interesting items.

Monitoring TomcatMonitoring Tomcat

● Status of connector
● Status of request-processor thread pool
● Status of data sources
● Request performance

● Status of connector
● Status of request-processor thread pool
● Status of data sources
● Request performance

Tomcat has a great deal of information available as
well. Here's a sample of what's there.
Tomcat has a great deal of information available as
well. Here's a sample of what's there.

JMX ToolsJMX Tools

● jconsole (JDK)
● VisualVM (JDK, app bundle)
● Most profilers (e.g. YourKit, etc.)
● Custom tools using javax.management API

● jconsole (JDK)
● VisualVM (JDK, app bundle)
● Most profilers (e.g. YourKit, etc.)
● Custom tools using javax.management API

While JMX is an API + protocol, you don't need to
know or understand either of them to benefit: tools
already exist.

You can always write your own if you need
something special.

While JMX is an API + protocol, you don't need to
know or understand either of them to benefit: tools
already exist.

You can always write your own if you need
something special.

Monitoring JVM: HeapMonitoring JVM: Heap

An example of the JVM's exposure of the Java
heap's usage: initial and maximum values are
available as well as the currently-used measurement.

Notice the NonHeapMemoryUsage attribute which
has not yet been “expanded” as the
HeapMemoryUsage attribute has. Both of these
attribute values are represented by objects that
contain multiple name-value pairs. The object that
stores these pairs also indicates the data type of
each value and can include descriptive information
for a client as well.

An example of the JVM's exposure of the Java
heap's usage: initial and maximum values are
available as well as the currently-used measurement.

Notice the NonHeapMemoryUsage attribute which
has not yet been “expanded” as the
HeapMemoryUsage attribute has. Both of these
attribute values are represented by objects that
contain multiple name-value pairs. The object that
stores these pairs also indicates the data type of
each value and can include descriptive information
for a client as well.

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Image: sceenshot from VisualVM of Tomcat's MBean
tree.

Tomcat provides a wealth of information about its
internal state. Much of this information is merely
configuration values that are read on startup and do
not change over time.

There is, however, a great deal of real-time data
available about the servlet container and its various
components. I'll dive into these practical examples to
demonstrate the rich data that is available.

I'm going to cover these out-of-order with respect to
the top-to-bottom order shown above in order to
ease-into some of the concepts.

Image: sceenshot from VisualVM of Tomcat's MBean
tree.

Tomcat provides a wealth of information about its
internal state. Much of this information is merely
configuration values that are read on startup and do
not change over time.

There is, however, a great deal of real-time data
available about the servlet container and its various
components. I'll dive into these practical examples to
demonstrate the rich data that is available.

I'm going to cover these out-of-order with respect to
the top-to-bottom order shown above in order to
ease-into some of the concepts.

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Tomcat tracks the performance of requests (in
aggregate) for each connector separately. A
GlobalRequestProcessor exists for each connector
where you can obtain information about the
performance of the requests handled by that
particular connector.

Tomcat tracks the performance of requests (in
aggregate) for each connector separately. A
GlobalRequestProcessor exists for each connector
where you can obtain information about the
performance of the requests handled by that
particular connector.

Monitoring Tomcat: RequestsMonitoring Tomcat: Requests

Here is a view of one of Tomcat's
GlobalRequestProcessors. I happen to have 3
connectors configured, and you can tell them apart
by their names which also indicate a lot about them:
protocol, interface address, and port number will
uniquely identify any connector's
GlobalRequestProcessor.

These GlobalRequestProcessors keep track of
metrics about requests such as the number of
requests, the cumulative processing time of those
requests, and the overall volume of data processed.

Here is a view of one of Tomcat's
GlobalRequestProcessors. I happen to have 3
connectors configured, and you can tell them apart
by their names which also indicate a lot about them:
protocol, interface address, and port number will
uniquely identify any connector's
GlobalRequestProcessor.

These GlobalRequestProcessors keep track of
metrics about requests such as the number of
requests, the cumulative processing time of those
requests, and the overall volume of data processed.

Monitoring Tomcat: RequestsMonitoring Tomcat: Requests

Any MBean can support operations that can be
called via the JMX APIs. The
GlobalRequestProcessor beans have a single
operation: resetCounters. This operation as you
might guess resets all the collected metrics for the
GlobalRequestProcessor to zero.

Any MBean can support operations that can be
called via the JMX APIs. The
GlobalRequestProcessor beans have a single
operation: resetCounters. This operation as you
might guess resets all the collected metrics for the
GlobalRequestProcessor to zero.

Monitoring Tomcat: RequestsMonitoring Tomcat: Requests

All values zeroed-out!

Resetting these counters can be useful if you want to
monitor performance data over time and want to
periodically reset the state of the connector's metrics.

All values zeroed-out!

Resetting these counters can be useful if you want to
monitor performance data over time and want to
periodically reset the state of the connector's metrics.

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Sessions are another thing you might want to keep
track of: too many sessions can bog-down a server
and cause performance problems. The real problem
is storing lots of data in the session, or course, but
the number of sessions can be an important data
point in your server monitoring strategy.

Sessions are another thing you might want to keep
track of: too many sessions can bog-down a server
and cause performance problems. The real problem
is storing lots of data in the session, or course, but
the number of sessions can be an important data
point in your server monitoring strategy.

Monitoring Tomcat: SessionsMonitoring Tomcat: Sessions

Most useful attributes shown here: activeSessions,
maxActive, and expiredSessions. One attribute that
is not shown is the sessionCreationRate, which gives
you an idea of how fast sessions are being created.

Tomcat actually exposes every session in the
container via MBean operations. You can fetch a list
of all session ids, fetch attribute values from a
particular session, and even expire sessions directly.

Most useful attributes shown here: activeSessions,
maxActive, and expiredSessions. One attribute that
is not shown is the sessionCreationRate, which gives
you an idea of how fast sessions are being created.

Tomcat actually exposes every session in the
container via MBean operations. You can fetch a list
of all session ids, fetch attribute values from a
particular session, and even expire sessions directly.

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

A great number of web applications use a relational
database via JDBC. Those DataSources configured
via Tomcat (and not directly in the application, such
as those configured by Spring, Hibernate, etc.) are
available for inspection.

Tomcat's DataSources have a connection pool with
minimum and maximum sizes (numbers of
connections), and a maxIdle setting which allows the
pool to grow and shrink depending upon the
demand.

A great number of web applications use a relational
database via JDBC. Those DataSources configured
via Tomcat (and not directly in the application, such
as those configured by Spring, Hibernate, etc.) are
available for inspection.

Tomcat's DataSources have a connection pool with
minimum and maximum sizes (numbers of
connections), and a maxIdle setting which allows the
pool to grow and shrink depending upon the
demand.

Monitoring Tomcat: DataSourcesMonitoring Tomcat: DataSources

Specifically, you might want to take a look at the
numActive and numIdle attributes: you can see if
your JDBC connection pool is meeting the demand
of your users.

Note that I have maxActive=1 since this is a test
system.

Specifically, you might want to take a look at the
numActive and numIdle attributes: you can see if
your JDBC connection pool is meeting the demand
of your users.

Note that I have maxActive=1 since this is a test
system.

Monitoring TomcatMonitoring Tomcat
● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

● Status of data sources
● Status of request-

processor thread pool
● Request performance
● Session information

Each of Tomcat's connectors has a thread pool that
is used to actually process the requests: once a
request arrives, it is dispatched to a thread in the
pool.

Thread pools in Tomcat are called Executors and
may be shared between connectors, which is why
they are treated separately from the Connectors
themselves.

Executors are like the JDBC connection-pools from
the previous example: they have minimum and
maximum sizes, as well as an idle target to help
match resources to user demand.

Each of Tomcat's connectors has a thread pool that
is used to actually process the requests: once a
request arrives, it is dispatched to a thread in the
pool.

Thread pools in Tomcat are called Executors and
may be shared between connectors, which is why
they are treated separately from the Connectors
themselves.

Executors are like the JDBC connection-pools from
the previous example: they have minimum and
maximum sizes, as well as an idle target to help
match resources to user demand.

Monitoring Tomcat: ThreadsMonitoring Tomcat: Threads

You can find out the number of currently-active
requests (activeCount), the total number of requests
processed (by the executor, which may not be the
same as the number processed by any given
connector), etc.

You can find out the number of currently-active
requests (activeCount), the total number of requests
processed (by the executor, which may not be the
same as the number processed by any given
connector), etc.

Monitoring Tomcat: ThreadsMonitoring Tomcat: Threads

Here, I've fired-up a little JMeter script to put some
load on the server. You can see that there are 6
active threads and the pool size has jumped from 4
threads to 21, indicating that I've put quite a load on
the pool – relatively speaking. The
completedTaskCount is gong-up dramatically.

(I suspect the reason I don't have 21 threads busy--
or more – right now is because my laptop only has 8
logical cores, so really only 8 threads can be active
at once – that means both JMeter and Tomcat. The
requests are also processed so quickly that it's hard
to catch a large number of threads actually active.)

Here, I've fired-up a little JMeter script to put some
load on the server. You can see that there are 6
active threads and the pool size has jumped from 4
threads to 21, indicating that I've put quite a load on
the pool – relatively speaking. The
completedTaskCount is gong-up dramatically.

(I suspect the reason I don't have 21 threads busy--
or more – right now is because my laptop only has 8
logical cores, so really only 8 threads can be active
at once – that means both JMeter and Tomcat. The
requests are also processed so quickly that it's hard
to catch a large number of threads actually active.)

Monitoring Tomcat: ThreadsMonitoring Tomcat: Threads

After a bit more load, I've been able to capture the
activeCount getting a bit higher.
After a bit more load, I've been able to capture the
activeCount getting a bit higher.

Monitoring Tomcat: ThreadsMonitoring Tomcat: Threads

Don't want to track the values yourself over time? No
problem: just double-click on any numeric value and
VisualVM will graph it for you over time.

Don't want to track the values yourself over time? No
problem: just double-click on any numeric value and
VisualVM will graph it for you over time.

Monitoring Your ApplicationMonitoring Your Application
● Monitor Application Processes
● Performance Metrics
● On-the-fly re-configuration

● Monitor Application Processes
● Performance Metrics
● On-the-fly re-configuration

So, the JVM and Tomcat expose information about
themselves. That's great for monitoring the state of
the JVM and the servlet container, but what about
your own application's health?

You have caches, other data stores, complex
objects, and a little bit of everything going on inside
your own application. How can we peek under those
covers?

So, the JVM and Tomcat expose information about
themselves. That's great for monitoring the state of
the JVM and the servlet container, but what about
your own application's health?

You have caches, other data stores, complex
objects, and a little bit of everything going on inside
your own application. How can we peek under those
covers?

Monitoring Your ApplicationMonitoring Your Application
● Write an MBean

– Create an Interface: FooMBean
– Create an Implementation: Foo
– Create an XML MBean descriptor

● Deploy package to Tomcat
– Publish the MBean to the MBean server

● Query / invoke as necessary

* Example code will be available at
http://people.apache.org/~schultz/ApacheCon NA 2014/Tomcat Monitoring/

A great way to do this is to write your own MBean.
Then you can use all the tools described in this
presentation to track arbitrary details about your
application.

Remember that you can also invoke operations on
MBeans, so you can even change the state and take
whatever actions you feel are worthwhile from a JMX
client.

It's easy to write your own MBean: just follow the
steps above. I'll show a simple example in the next
few slides.

A great way to do this is to write your own MBean.
Then you can use all the tools described in this
presentation to track arbitrary details about your
application.

Remember that you can also invoke operations on
MBeans, so you can even change the state and take
whatever actions you feel are worthwhile from a JMX
client.

It's easy to write your own MBean: just follow the
steps above. I'll show a simple example in the next
few slides.

Example MBeanExample MBean
● Servlet Filter that captures total request

processing time
– Timestamp prior to request
– Timestamp after request
– Add the delta to a JMX-accessible counter:

RequestStats

Tomcat also provides request-processing metrics on
a per-servlet basis. Want to know how the JSP
servlet is performing? No problem: Tomcat already
tracks that information for you.

The problem is that it's not very fine-grained: you get
metrics from the simplest index.jsp mixed-in with
your PerformLongTransactionAndProducePDF.jsp
numbers. That's not particularly convenient.

So, I'm going to write a Filter that captures this kind
of data and makes it available via JMX. You can have
multiple instances of the Filter mapped to different
URL patterns, and you'll get a separate set of metrics
for each of them.

Tomcat also provides request-processing metrics on
a per-servlet basis. Want to know how the JSP
servlet is performing? No problem: Tomcat already
tracks that information for you.

The problem is that it's not very fine-grained: you get
metrics from the simplest index.jsp mixed-in with
your PerformLongTransactionAndProducePDF.jsp
numbers. That's not particularly convenient.

So, I'm going to write a Filter that captures this kind
of data and makes it available via JMX. You can have
multiple instances of the Filter mapped to different
URL patterns, and you'll get a separate set of metrics
for each of them.

RequestStats MBeanRequestStats MBean
● Write an MBean

public interface RequestStatsMBean {
 public long getProcessingTime();
 public long getRequestCount();
 public void resetCounters();
}
public class RequestStats
 implements RequestStatsMBean {
 [...]
 public void updateStats(long
timestamp, ServletRequest request, long
elapsed) {

_totalElapsedTime.addAndGet(elapsed);

_requestCount.incrementAndGet();
 }

 public long getProcessingTime(){
 return _totalElapsedTime.get();
 }
 public long getRequestCount() {
 return _requestCount.get();
 }
 public void resetCounters() {
 _totalElapsedTime.set(0l);
 _requestCount.set(0l);
 }
}

For Tomcat's MBean server implementation, you
have to write an interface as well as a concrete class.
No surprises in the code, here.

Note that I'm using AtomicLong objects (declarations
not shown for brevity) because they are being used
in a multi-threaded context and need to remain
threadsafe.

For Tomcat's MBean server implementation, you
have to write an interface as well as a concrete class.
No surprises in the code, here.

Note that I'm using AtomicLong objects (declarations
not shown for brevity) because they are being used
in a multi-threaded context and need to remain
threadsafe.

RequestStats MBeanRequestStats MBean
● Write an MBean descriptor

<mbeans-descriptors>
 <mbean name="RequestStats" ...>
 <operation name="getProcessingTime"
 description="Gets the total number of
milliseconds spent processing requests."
 impact="INFO"
 returnType="long" />
 <operation name="getRequestCount"
 description="Gets the total number
of requests processed."
 impact="INFO"
 returnType="long" />

 <operation
 name="resetCounters"
 description="Resets all
counters."
 impact="ACTION"
 returnType="void" />
 </mbean>
</mbeans-descriptors>

Tomcat's documentation states that you must create
an mbeans-descriptors.xml file and place it in the
same package as your MBean interface, but I have
found that it is not actually a requirement.

But, it's a good idea to write the descriptor because it
documents what your attributes mean and what your
and operations do. JMX clients can read this
information and present it to the user. Documentation
is always nice.

(I was unable to get Tomcat to read my mbeans-
descriptors.xml file for some reason. Early-on in my
work, I recall it working, but it stopped working at
some point and I wasn't able to discover the cause.)

Tomcat's documentation states that you must create
an mbeans-descriptors.xml file and place it in the
same package as your MBean interface, but I have
found that it is not actually a requirement.

But, it's a good idea to write the descriptor because it
documents what your attributes mean and what your
and operations do. JMX clients can read this
information and present it to the user. Documentation
is always nice.

(I was unable to get Tomcat to read my mbeans-
descriptors.xml file for some reason. Early-on in my
work, I recall it working, but it stopped working at
some point and I wasn't able to discover the cause.)

RequestStats MBeanRequestStats MBean
● Create JAR

– Java interface
– Java implementation
– mbeans-descriptors.xml

● Put JAR into CATALINA_BASE/lib

● Create JAR
– Java interface
– Java implementation
– mbeans-descriptors.xml

● Put JAR into CATALINA_BASE/lib

Package-up the MBean and put it into Tomcat's lib
directory. Note that the bean must be placed-into the
container's lib directory and not with your web
application, otherwise you risk a pinned-ClassLoader
memory leak during redeployment.

I believe Tomcat requires that your MBean be in the
lib/ directory anyway, do you may not actually have a
choice.

Package-up the MBean and put it into Tomcat's lib
directory. Note that the bean must be placed-into the
container's lib directory and not with your web
application, otherwise you risk a pinned-ClassLoader
memory leak during redeployment.

I believe Tomcat requires that your MBean be in the
lib/ directory anyway, do you may not actually have a
choice.

RequestStats MBeanRequestStats MBean
● Write the Filter

 public void init(FilterConfig config) {
 MBeanServer server = getServer();
 server.registerMBean(_stats, new
ObjectName("Example:RequestStats=RequestStats,name=" + filterName;));
 }
 public void doFilter(...) {
 timestamp = elapsed = System.currentTimeMillis();
 chain.doFilter(request, response);
 elapsed = System.currentTimeMillis() - elapsed;

 _stats.updateStats(timestamp, request, elapsed);
 }

Now, we need to write the Filter that will actually
capture the data and publish the MBean to the
server.

The init method here registers the Mbean (_stats),
and the doFilter method just times requests as they
pass-through, then updates the stats on the bean.

Now, we need to write the Filter that will actually
capture the data and publish the MBean to the
server.

The init method here registers the Mbean (_stats),
and the doFilter method just times requests as they
pass-through, then updates the stats on the bean.

RequestStats MBeanRequestStats MBean
● Map the Filter
 <filter>
 <filter-name>servlet-request-stats</filter-name>
 <filter-class>filters.RequestStatsFilter</filter-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>servlets</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>servlet-request-stats</filter-name>
 <url-pattern>/servlets/*</url-pattern>
 </filter-mapping>
 <filter><filter-name>jsp-request-stats</filter-name><filter-
class>filters.RequestStatsFilter</filter-class><init-param><param-name>name</param-
name><param-value>jsps</param-value></init-param></filter>
 <filter-mapping><filter-name>jsp-request-stats</filter-name><url-pattern>/jsp/*</url-
pattern></filter-mapping>

● Map the Filter
 <filter>
 <filter-name>servlet-request-stats</filter-name>
 <filter-class>filters.RequestStatsFilter</filter-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>servlets</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>servlet-request-stats</filter-name>
 <url-pattern>/servlets/*</url-pattern>
 </filter-mapping>
 <filter><filter-name>jsp-request-stats</filter-name><filter-
class>filters.RequestStatsFilter</filter-class><init-param><param-name>name</param-
name><param-value>jsps</param-value></init-param></filter>
 <filter-mapping><filter-name>jsp-request-stats</filter-name><url-pattern>/jsp/*</url-
pattern></filter-mapping>

Let's map two instances of the Filter to two different
URL patterns to see what things look like.
Let's map two instances of the Filter to two different
URL patterns to see what things look like.

RequestStats MBeanRequestStats MBean

Check it: JSPs and servlets have separate stats. I've
put a bit of JMeter load on the server to get some
numbers.

Check it: JSPs and servlets have separate stats. I've
put a bit of JMeter load on the server to get some
numbers.

RequestStats MBeanRequestStats MBean

We can also reset counters, just like with the built-in
Tomcat MBeans.
We can also reset counters, just like with the built-in
Tomcat MBeans.

Automated MonitoringAutomated Monitoring

● Remote Access
● Large Scale
● Constant

● Remote Access
● Large Scale
● Constant

All the examples thus far have used VisualVM which
is a GUI interface. While that's fun for inspecting a
single server and maybe doing some scouting for
interesting data available, it's not going to work in the
real world of production monitoring.

All the examples thus far have used VisualVM which
is a GUI interface. While that's fun for inspecting a
single server and maybe doing some scouting for
interesting data available, it's not going to work in the
real world of production monitoring.

Automated MonitoringAutomated Monitoring

● Remote Access
● Large Scale
● Constant
● Need more tools!

● Remote Access
● Large Scale
● Constant
● Need more tools!

Automated MonitoringAutomated Monitoring

● Nagios
– S imp le
– Flexible
– Well-deployed
– No-cost community version available

● Nagios
– Simple
– Flexible
– Well-deployed
– No-cost community version available

Let's use Nagios: a widely-deployed monitoring
system.
Let's use Nagios: a widely-deployed monitoring
system.

Automated MonitoringAutomated Monitoring

The ASF uses Nagios and Tomcat exposes data via
JMX. Let's see how we can marry the two.
The ASF uses Nagios and Tomcat exposes data via
JMX. Let's see how we can marry the two.

Nagios MonitoringNagios Monitoring

● Plug-in architecture (i.e. arbitrary scripts)
● Freely-available JMX plug-in: check_jmx
$./check_jmx -U
service:jmx:rmi:///jndi/rmi://localhost:1100/jmxrmi\

 -O java.lang:type=Memory -A NonHeapMemoryUsage -K used\

 -w 29000000 -c 30000000

JMX WARNING NonHeapMemoryUsage.used=29050880

● Plug-in architecture (i.e. arbitrary scripts)
● Freely-available JMX plug-in: check_jmx
$./check_jmx -U
service:jmx:rmi:///jndi/rmi://localhost:1100/jmxrmi\

 -O java.lang:type=Memory -A NonHeapMemoryUsage -K used\

 -w 29000000 -c 30000000

JMX WARNING NonHeapMemoryUsage.used=29050880

Nagios supports plug-ins and there's one for fetching
data via JMX: check_jmx: if you know the object's
name, you can get data from the command-line.

Nagios supports plug-ins and there's one for fetching
data via JMX: check_jmx: if you know the object's
name, you can get data from the command-line.

Nagios MonitoringNagios Monitoring

● Problems with check_jmx
– Complex configuration for remote JMX
– JVM launch for every check
– Course-grained authentication options

● Problems with check_jmx
– Complex configuration for remote JMX
– JVM launch for every check
– Course-grained authentication options

There are some caveats with check_jmx. Think about
how many values you might want to monitor:
spinning-up 14 JVMs every minute might just be
considered a waste of system resources.

There are some caveats with check_jmx. Think about
how many values you might want to monitor:
spinning-up 14 JVMs every minute might just be
considered a waste of system resources.

Nagios MonitoringNagios Monitoring

● Alternative Option: Tomcat's JMXProxyServlet
– JMX data available via HTTP
– Can use Tomcat's authentication tools

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' \
 -w 29000000 -c 30000000
JMX CRITICAL: OK - Attribute get 'java.lang:type=Memory' -
HeapMemoryUsage - key 'used' = 100875248

● Alternative Option: Tomcat's JMXProxyServlet
– JMX data available via HTTP
– Can use Tomcat's authentication tools

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' \
 -w 29000000 -c 30000000
JMX CRITICAL: OK - Attribute get 'java.lang:type=Memory' -
HeapMemoryUsage - key 'used' = 100875248

* check_jmxproxy can be found at
http://wiki.apache.org/tomcat/tools/check_jmxproxy.pl

Tomcat has JMXProxyServlet.

check_jmxproxy is a little Perl script I wrote to fetch
data from JMXProxyServlet and provide Nagios-
friendly output.

Same basic features of check_jmx except that Java
and the JMX protocol aren't actually used: we use
Tomcat's HTTP-tp-JMX proxy instead.

Tomcat has JMXProxyServlet.

check_jmxproxy is a little Perl script I wrote to fetch
data from JMXProxyServlet and provide Nagios-
friendly output.

Same basic features of check_jmx except that Java
and the JMX protocol aren't actually used: we use
Tomcat's HTTP-tp-JMX proxy instead.

Nagios MonitoringNagios Monitoring

Here's a glance at some values sampled in a
production setting. We'll talk about the OOME one
later.

Here's a glance at some values sampled in a
production setting. We'll talk about the OOME one
later.

JMX Command-line TricksJMX Command-line Tricks
● Show all logged-in usernames
for sessionid in `wget -O - 'http://user:pwd@host/manager/jmxproxy?
invoke=Catalina:type=Manager,context=/myapp,host=localhost&op=listSessionI
ds' \

 | sed -e "s/ /\n/g"

 | grep '^[0-9A-Za-z]\+\(\..*\)\?$' ;\

do wget -O – "http://user:pwd@host/manager/jmxproxy?
invoke=Catalina:type=Manager,context=/myapp,host=localhost&op=getSessionAt
tribute&ps=$sessionid,user" ; done 2>/dev/null \

 | grep User

● Show all logged-in usernames
for sessionid in `wget -O - 'http://user:pwd@host/manager/jmxproxy?
invoke=Catalina:type=Manager,context=/myapp,host=localhost&op=listSessionI
ds' \

 | sed -e "s/ /\n/g"

 | grep '^[0-9A-Za-z]\+\(\..*\)\?$' ;\

do wget -O – "http://user:pwd@host/manager/jmxproxy?
invoke=Catalina:type=Manager,context=/myapp,host=localhost&op=getSessionAt
tribute&ps=$sessionid,user" ; done 2>/dev/null \

 | grep User

We store a “user” bean in our sessions, and so we
can use some command-line tricks mixed with data
from check_jmxproxy to list all the currently logged-in
users.

We can use similar tricks to expire all sessions that
don't represent a logged-in user.

We store a “user” bean in our sessions, and so we
can use some command-line tricks mixed with data
from check_jmxproxy to list all the currently logged-in
users.

We can use similar tricks to expire all sessions that
don't represent a logged-in user.

Tracking Values Over TimeTracking Values Over Time
● Some metrics are best observed as deltas

– Session count
– Request error count

● Requires that you have a history of data
● Requires that you consult the history of that data
● check_jmxproxy provides such capabilities

● Some metrics are best observed as deltas
– Session count
– Request error count

● Requires that you have a history of data
● Requires that you consult the history of that data
● check_jmxproxy provides such capabilities

What about data whose rate-of-change is more
important than its current value?

check_jmxproxy can store the previous value
retrieved and then compare during the next
invocation.

What about data whose rate-of-change is more
important than its current value?

check_jmxproxy can store the previous value
retrieved and then compare during the next
invocation.

Tracking Values Over TimeTracking Values Over Time
$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 102278904,
delta=[...]

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 113806144,
delta=11527240

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 109264056,
delta=-4542088

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 102278904,
delta=[...]

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 113806144,
delta=11527240

$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=java.lang:type=Memory&att=HeapMemoryUsage&key=used' -w 33554432 -c 50331648 --write number.out
--compare number.out

JMX OK: OK - Attribute get 'java.lang:type=Memory' - HeapMemoryUsage - key 'used' = 109264056,
delta=-4542088

Let's watch heap memory usage over a few
invocations.
Let's watch heap memory usage over a few
invocations.

Tracking Values Over TimeTracking Values Over Time
● Session count

– Tomcat actually provides this already via Manager's
sessionCreateRate attribute

● Request errors
$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=Catalina:type=RequestProcessor,worker="http-nio-127.0.0.1-
8217",name=HttpRequest1&att=errorCount' -w 1 -c 10 --write errors.txt --compare
errors.txt

JMX OK: OK - Attribute get 'Catalina:type=RequestProcessor,worker="http-nio-
127.0.0.1-8217",name=HttpRequest1' - errorCount = 0, delta=0

● Session count
– Tomcat actually provides this already via Manager's
sessionCreateRate attribute

● Request errors
$./check_jmxproxy -U 'http://localhost/manager/jmxproxy?
get=Catalina:type=RequestProcessor,worker="http-nio-127.0.0.1-
8217",name=HttpRequest1&att=errorCount' -w 1 -c 10 --write errors.txt --compare
errors.txt

JMX OK: OK - Attribute get 'Catalina:type=RequestProcessor,worker="http-nio-
127.0.0.1-8217",name=HttpRequest1' - errorCount = 0, delta=0

There are lots of data whose rates of change are
more important than their current values. Session
count and error count are among them.

There are lots of data whose rates of change are
more important than their current values. Session
count and error count are among them.

Detecting OutOfMemoryDetecting OutOfMemory
● Many sources of OOME

– Heap exhaustion
– PermGen exhaustion
– Hit thread limit
– Hit file descriptor limit

● Many sources of OOME
– Heap exhaustion
– PermGen exhaustion
– Hit thread limit
– Hit file descriptor limit

Let's talk about OutOfMemoryErrors. Of all
monitoring questions I've heard about Java web
applications, this one is always the first: how can I
get notified about an OOME?

Let's talk about OutOfMemoryErrors. Of all
monitoring questions I've heard about Java web
applications, this one is always the first: how can I
get notified about an OOME?

Detecting OutOfMemoryDetecting OutOfMemory
● Two types of heap OOME

– One thread generates lots of local references
– All threads collaborate to generate globally-

reachable objects (e.g. session data)
● Former is recoverable, latter is not
● You want to be notified in any case

● Two types of heap OOME
– One thread generates lots of local references
– All threads collaborate to generate globally-

reachable objects (e.g. session data)
● Former is recoverable, latter is not
● You want to be notified in any case

Let's focus on heap OOME for a moment.Let's focus on heap OOME for a moment.

Memory Pool ThresholdsMemory Pool Thresholds

Each memory pool in the JVM has an MBean to
represent it. Here's the PermGen memory pool. You
can see the current usage and there are a number of
“threshold” values that you can set.

Whenever the memory usage exceeds the threshold
value, the JVM increments the
UsageThresholdCount value and also publishes a
notification to all interested listeners.

Each memory pool in the JVM has an MBean to
represent it. Here's the PermGen memory pool. You
can see the current usage and there are a number of
“threshold” values that you can set.

Whenever the memory usage exceeds the threshold
value, the JVM increments the
UsageThresholdCount value and also publishes a
notification to all interested listeners.

Memory Pool ThresholdsMemory Pool Thresholds

Here's the Old (tenured) Generation with its usage
expanded so you can see the individual values. I've
also set a threshold of roughly 115 MiB, which I know
is too low of a threshold: we'll exceed this before the
GC kicks-in.

Let's re-run my JMeter load test from earlier just to
chew-through some heap memory and see if we can
break the threshold.

Here's the Old (tenured) Generation with its usage
expanded so you can see the individual values. I've
also set a threshold of roughly 115 MiB, which I know
is too low of a threshold: we'll exceed this before the
GC kicks-in.

Let's re-run my JMeter load test from earlier just to
chew-through some heap memory and see if we can
break the threshold.

Memory Pool ThresholdsMemory Pool Thresholds

There: the UsageThresholdCount value is now 2 (up
from zero). Note that the UsageThresholdExceeded
value is false even though we have clearly broken
that threshold. The “Exceeded” attribute value will
only be true while the threshold is still being
exceeded. It's not a one-way trip: once the memory
usage falls below the threshold, that value will go
back to false.

You can see here that the current usage is about
100MiB, less than the 115MiB threshold we set.

There: the UsageThresholdCount value is now 2 (up
from zero). Note that the UsageThresholdExceeded
value is false even though we have clearly broken
that threshold. The “Exceeded” attribute value will
only be true while the threshold is still being
exceeded. It's not a one-way trip: once the memory
usage falls below the threshold, that value will go
back to false.

You can see here that the current usage is about
100MiB, less than the 115MiB threshold we set.

Memory Pool ThresholdsMemory Pool Thresholds

Hey, look at that! We can get a fairly detailed (trust
me) notification about the memory threshold
condition. Cool.

Hey, look at that! We can get a fairly detailed (trust
me) notification about the memory threshold
condition. Cool.

Memory Pool ThresholdsMemory Pool Thresholds
● Choice of how to detect exceeded-

threshold conditions
– Polling using check_jmxproxy
– Register a notification listener from Java

● Have that listener take some action

● Choice of how to detect exceeded-
threshold conditions
– Polling using check_jmxproxy
– Register a notification listener from Java

● Have that listener take some action

As usual, we have some options.

Polling doesn't seem like a great idea. What about
these notifications?

As usual, we have some options.

Polling doesn't seem like a great idea. What about
these notifications?

Detect OutOfMemoryDetect OutOfMemory
● Monitoring Memory Thresholds

– Set threshold on startup
– Register a notification listener (callback)
– Watch “exceeded” count (poll)
– Report to monitoring software (Nagios)
– Repeat for each memory pool you want to watch
– Hope the JVM does not fail during notification
– This is getting ridiculous

● Monitoring Memory Thresholds
– Set threshold on startup
– Register a notification listener (callback)
– Watch “exceeded” count (poll)
– Report to monitoring software (Nagios)
– Repeat for each memory pool you want to watch
– Hope the JVM does not fail during notification
– This is getting ridiculous

Great! All you have to do is … wait. There must be a
better way. One that is less fragile. This stuff is
supposed to be easy.

Great! All you have to do is … wait. There must be a
better way. One that is less fragile. This stuff is
supposed to be easy.

Detecting OutOfMemoryDetecting OutOfMemory
● JVM has an easier way
● Use -XX:OnOutOfMemoryError to run a

command on first OOME detected by the
JVM

● Need a command to notify Nagios

● JVM has an easier way
● Use -XX:OnOutOfMemoryError to run a

command on first OOME detected by the
JVM

● Need a command to notify Nagios

From my field research and anecdotal evidence,
-XX:OnOutOfMemoryError seems to be the most
reliable way to get notifications of OOMEs.

There is one problem: you only get notified of the first
OOME detected, so if you want to get another
notification, you're going to have to bounce the JVM.

From my field research and anecdotal evidence,
-XX:OnOutOfMemoryError seems to be the most
reliable way to get notifications of OOMEs.

There is one problem: you only get notified of the first
OOME detected, so if you want to get another
notification, you're going to have to bounce the JVM.

Notify Nagios on OOMENotify Nagios on OOME
● Script that wraps curl
$ curl -si \

 --data-urlencode 'cmd_typ=30' \

 --data-urlencode 'cmd_mod=2' \

 --data-urlencode "host=myhost" \

 --data-urlencode "service=JVM:Heap:OOME" \

 --data-urlencode "plugin_state=2" \

 --data-urlencode "plugin_output=OOME CRITICAL" \

 'https://monitoring-host/nagios/cgi-bin/cmd.cgi'

● Script that wraps curl
$ curl -si \

 --data-urlencode 'cmd_typ=30' \

 --data-urlencode 'cmd_mod=2' \

 --data-urlencode "host=myhost" \

 --data-urlencode "service=JVM:Heap:OOME" \

 --data-urlencode "plugin_state=2" \

 --data-urlencode "plugin_output=OOME CRITICAL" \

 'https://monitoring-host/nagios/cgi-bin/cmd.cgi'

Script can be found at http://wiki.apache.org/tomcat/tools/nagios-send-passive-
check.sh

Here is a curl command that can be used to poke a
passive-check into Nagios. To encapsulate the
command, as well as to prevent the HTTP
authentication information from appearing in a ps
listing, we'll wrap this command in a script.

Note that you'll probably want to use a Nagios
service configured for only “passive” checks since no
active checks are really possible. Also, disable “flap
detection” otherwise the service will immediately
appear to be “flapping” when you report an OOME to
Nagios – I'm not sure why – and you won't get an
actual notification because Nagios thinks it's doing
you a favor.

Here is a curl command that can be used to poke a
passive-check into Nagios. To encapsulate the
command, as well as to prevent the HTTP
authentication information from appearing in a ps
listing, we'll wrap this command in a script.

Note that you'll probably want to use a Nagios
service configured for only “passive” checks since no
active checks are really possible. Also, disable “flap
detection” otherwise the service will immediately
appear to be “flapping” when you report an OOME to
Nagios – I'm not sure why – and you won't get an
actual notification because Nagios thinks it's doing
you a favor.

Monitoring Tomcat with JMXMonitoring Tomcat with JMX
● JMX Provides Monitoring and Management of JVMs
● Tomcat exposes a great amount of information via JMX
● Applications can expose anything to JMX via MBeans
● JRE ships with tools for light JMX interaction
● Practical use of JMX requires some additional tools

● JMX Provides Monitoring and Management of JVMs
● Tomcat exposes a great amount of information via JMX
● Applications can expose anything to JMX via MBeans
● JRE ships with tools for light JMX interaction
● Practical use of JMX requires some additional tools

Summary.Summary.

ResourcesResources
● Presentation Slides

http://people.apache.org/~schultz/ApacheCon NA 2014/Tomcat Monitoring/

● Nagios passive-check script
http://wiki.apache.org/tomcat/tools/nagios-send-passive-check.sh

● check_jmxproxy
http://wiki.apache.org/tomcat/tools/check_jmxproxy.pl

● Special thanks to Christopher Blunck (MBeans info)
http://oss.wxnet.org/mbeans.html

● Presentation Slides
http://people.apache.org/~schultz/ApacheCon NA 2014/Tomcat Monitoring/

● Nagios passive-check script
http://wiki.apache.org/tomcat/tools/nagios-send-passive-check.sh

● check_jmxproxy
http://wiki.apache.org/tomcat/tools/check_jmxproxy.pl

● Special thanks to Christopher Blunck (MBeans info)
http://oss.wxnet.org/mbeans.html

Resources.
Questions?
Resources.
Questions?

	Slide 1
	Slide 2
	Slide3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 1
	Slide 2
	Slide3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

