cloudera

Ask Bigger Questions

Real Time Data Ingest into Hadoop
using Flume

Hari Shreedharan
Committer and PMC Member, Apache Flume

Software Engineer, Cloudera

What is Flume

- Collection, Aggregation of streaming Event Data
- Typically used for log data
- Significant advantages over ad-hoc solutions

- Reliable, Scalable, Manageable, Customizable and High
Performance

- Declarative, Dynamic Configuration
- Contextual Routing

- Feature rich

- Fully extensible

Core Concepts: Event

An Event is the fundamental unit of data transported by Flume
from its point of origination to its final destination. Event is a
byte array payload accompanied by optional headers.

- Payload is opaque to Flume

- Headers are specified as an unordered collection of string key-
value pairs, with keys being unique across the collection

- Headers can be used for contextual routing

Core Concepts: Client

An entity that generates events and sends them to one or more Agents.

- Example
Flume log4j Appender
Custom Client using Client SDK (org.apache.flume.api)
Embedded Agent — An agent embedded within your application
- Decouples Flume from the system where event data is consumed
from

- Not needed in all cases

Core Concepts: Agent

A container for hosting Sources, Channels, Sinks and other
components that enable the transportation of events from one
place to another.

- Fundamental part of a Flume flow

- Provides Configuration, Life-Cycle Management, and
Monitoring Support for hosted components

Typical Aggregation Flow

Apphlication

(o)}

=
S ——
T —

Agent

[Client]* = Agent [Agent]* > Destination

Core Concepts: Source

An active component that receives events from a specialized
location or mechanism and places it on one or Channels.

- Different Source types:

- Specialized sources for integrating with well-known systems.
Example: Syslog, Netcat

- Auto-Generating Sources: Exec, SEQ
- IPC sources for Agent-to-Agent communication: Avro
- Require at least one channel to function

Sources

- Different Source types:

- Specialized sources for integrating with well-known systems.
Example: Spooling Files, Syslog, Netcat, IMS

- Auto-Generating Sources: Exec, SEQ
- IPC sources for Agent-to-Agent communication: Avro, Thrift

- Require at least one channel to function

Core Concepts: Channel

A passive component that buffers the incoming events until they are
drained by Sinks.

- Different Channels offer different levels of persistence:

- Memory Channel: volatile
- Data lost if JVM or machine restarts
- File Channel: backed by WAL implementation

- Data not lost unless the disk dies.
- Eventually, when the agent comes back data can be accessed.

- Channels are fully transactional
- Provide weak ordering guarantees
- Can work with any number of Sources and Sinks.

Core Concepts: Sink

An active component that removes events from a Channel and
transmits them to their next hop destination.

- Different types of Sinks:

- Terminal sinks that deposit events to their final destination. For
example: HDFS, HBase, Morphline-Solr, Elastic Search

- Sinks support serialization to user’s preferred formats.

- HDFS sink supports time-based and arbitrary bucketing of data while
writing to HDFS.

- IPC sink for Agent-to-Agent communication: Avro, Thrift
- Require exactly one channel to function

Flow Reliability

> starttx

put events

end tx
end tx

Reliability based on:
- Transactional Exchange between Agents
- Persistence Characteristics of Channels in the Flow

Also Available:
« Built-in Load balancing Support
« Built-in Failover Support

Flow Reliability

Normal Flow

Flow Handling

Channels decouple impedance of upstream and downstream

- Upstream burstiness is damped by channels
- Downstream failures are transparently absorbed by channels

- Sizing of channel capacity is key in realizing these benefits

Configuration

- Java Properties File Format
Comment line
keyl = value
key2 = multi-line \
value

- Hierarchical, Name Based Configuration
agentl.channels.myChannel.type = FILE
agentl.channels.myChannel.capacity = 1000

- Uses soft references for establishing associations
agentl.sources.mySource.type = HTTP
agentl.sources.mySource.channels = myChannel

Configuration

= | Typical Deployment

I \ - All agents in a specific
g i . .
D o tier could be given the
I same name

j Ry}

1 | i : .

I%%CI:E - One configuration file
Pt with entries for three

_ agents can be used

“’:/ .t throughout

i
N

Contextual Routing

Achieved using Interceptors and Channel Selectors

i Channel :

g” s
Channel 3 Channel
B ” Processor l "l Selector -
' Interceptor

Interceptors
Interceptor

An Interceptor is a component applied to a source in pre-specified order
to enable decorating and filtering of events where necessary.

- Built-in Interceptors allow adding headers such as timestamps,
hostname, static markers etc.

- Custom interceptors can introspect event payload to create specific
headers where necessary

Contextual Routing

Channel Selector

A Channel Selector allows a Source to select one or more
Channels from all the Channels that the Source is configured with
based on preset criteria.

- Built-in Channel Selectors:
- Replicating: for duplicating the events
- Multiplexing: for routing based on headers

Contextual Routing

- Terminal Sinks can directly use Headers to make destination
selections

- HDFS Sink can use headers values to create dynamic path for
files that the event will be added to.

- Some headers such as timestamps can be used in a more
sophisticated manner

- Custom Channel Selector can be used for doing specialized
routing where necessary

Load Balancing and Failover

Sink Processor

A Sink Processor is responsible for invoking one sink from an
assigned group of sinks.

 Built-in Sink Processors:

- Load Balancing Sink Processor — using RANDOM, ROUND_ROBIN
or Custom selection algorithm

- Failover Sink Processor
- Default Sink Processor

2

1

Sink Processor

- Invoked by Sink Runner
- Acts as a proxy for a Sink

Sink Sink
Runner Processor

Channel

Sink

Sink Processor Configuration

- A Sink can exist in at most one group

- A Sink that is not in any group is handled via Default Sink
Processor

- Caution:

Removing a Sink Group does not make the sinks inactive!

Client API

- Simple API that can be used to send data to Flume agents.
- Simplest form — send a batch of events to one agent.

- Can be used to send data to multiple agents in a round-robin,
random or failover fashion (send data to one till it fails).

- Java only.

- flume.thrift can be used to generate code for other
languages.

- Use with Thrift source.

Embedded Agent

- Client APl throws exceptions if data could not be sent.
- Applications may not be able to tolerate this.
- Embedded Agent — A (limited) Flume agent within your application

- Has a channel — so buffers data in-memory or on-disk till the data is
sent or the channel is full.

- Throws exceptions only if the channel is full (or error writing to
channel).

- Cushion for application if something causes data to be stuck within
the application

- Supports sending data to other Flume agents only, no HDFS, HBase
etc.

Summary

- Clients send Events to Agents

- Agents hosts number Flume components — Source, Interceptors, Channel
Selectors, Channels, Sink Processors, and Sinks.

- Sources and Sinks are active components, where as Channels are passive

- Source accepts Events, passes them through Interceptor(s), and if not
filtered, puts them on channel(s) selected by the configured Channel
Selector

- Sink Processor identifies a sink to invoke, that can take Events from a
Channel and send it to its next hop destination

- Channel operations are transactional to guarantee one-hop delivery
semantics

- Channel persistence allows for ensuring end-to-end reliability

Questions?

