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About Me

e Software Engineer at YarcData, part of Cray Inc
* One of my responsibilities is the SPARQL Optimizer

e Have developed several database specific optimizations and run internal training sessions on
SPARQL optimization

e PMC Member and Committer on Apache Jena project

e Joined project in January 2012

e Have contributed implementations of several common SPARQL optimizations from the
literature

e Have also contributed some entirely new optimizations

e Lead developer on the dotNetRDF Project

e Developed two SPARQL engines over the past 5 years
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Procedural Notes

e Feel free to ask questions as we go along

e If I repeat the questions before | answer it's for the benefit of the audio recording

e USB sticks with resources relevant to the tutorial are
available

* You may need to share depending on number of attendees

@ Resources also available for download at TBC

e Or you can download just the tools at
http://jena.apache.org/download/

* Get both Apache Jena (the main distribution) and Jena Fuseki

@ Slides will be up on Slideshare at
http://www.slideshare.net/RobVesse
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Tutorial Schedule

Time Slot

Key Concepts 13:30-13:45
Tooling 13:45 - 14:15
BGP Optimization 14:15 - 14:30
Algebra Optimization 14:30 - 15:30
Writing Better Queries 15:30 - 16:00
Customizing the Optimizer 16:00 - 16:30
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Section Overview

® Key Concepts

SPARQL

SPARQL Algebra

Basic Graph Patterns (BGP)
What is SPARQL Optimization?
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SPARQL

e Declarative graph pattern matching query language for RDF
data

e Two versions:

e SPARQL 1.0 (Jan 2008) - http://www.w3.org/TR/rdf-spargl-query/
e SPARQL 1.1 (March 2013) - http://www.w3.org/TR/sparqgl11-overview/

e SPARQL 1.1 added many new features:

Grouping and Aggregation
Federated Query

Simpler negation constructs
Sub-queries

Update commands

e SPARQL is widely supported by APIs, tools and RDF
databases

e SPARQL 1.1 is fairly universally supported since it adds so many valuable new features
e http://www.w3.0rg/2009/sparqgl/implementations/
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SPARQL - Example Query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?age (COUNT(?age) AS ?count)
FROM <http://example.org/data.rdf>
WHERE

{

’X a foaf:Person ;
foaf:age rage .
}
GROUP BY ?age
HAVING (COUNT(?age) > 1)
ORDER BY DESC(?count)
LIMIT 5
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SPARQL - Execution Sequence

FROM . SPARQL 1.1 Core (SELECT)
(A0 ] SPARQL ity vems
grap 7 as | understand it - Dave Beckett

~. Version: 2011-06-16
~
AN Licensed under
s Creative Commens Attribution 3.0 United States License
SPARQL 1.1Federation Extensions ' ittp-/Awww. Gajobe. org/2009/11/spargi11/
SERVICE uri BINDINGS \ LemTTT -
graph pattern graph pattern ) 2 " T
’ A \\
\ ~
multiset / solution set NN . \ AN
1 P & ," N ‘\\ PREFIX foaf\:~\<http: //xmlns.com/foaf/0.1/>
GROUP BY L _Dan-si SELECT ?age (*COUNT(?age) AS 2count )
’ . . .--"77 °\_'\ FROM <http://example.org/data.rdf>
expression |®------o_______ S N
S \ WHERE {
EEVARN ?x a foaf:Person ;
P s~ H
s f Ss .
multiset / solution set per group S Tl ) foaf:age ?age .
\i 2 \ T GROUP BY ?age
(agg expr. P e cme—ae—-
istin P ettt HAVING (?count > 1)
(,‘:’%gc;?gnas'f distinct) o TN e ORDER BY ?count DESC
S PN .~ LIMIT 5
multiset / solution set per group .~~~ Il K M —
- »”’ ' ~
\i " - . X N result can be turned into
g L7 ' . an input solution set
VGTQXLNG . i . e via sub SELECT
exp. P . .
N — ’ N S
multiset / solution set -~ . AT

L& A siced, &
ORDERBY | ordered ordered LIMIT & ‘ ordered Project
vossions B solution —=| DISTINCT solution —»| OFFSET solution ™1 variables and —wmresult
exp | seq seq sicing | SO expressions
—

CC-BY 3.0 - Dave Beckett - http://www.dajobe.org/2009/11/sparql11/
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SPARQL - Learning More

e SPARQL by Example - Leigh Feigenbaum and Eric
Prud'hommeaux
e https://www.cambridgesemantics.com/en GB/semantic-university/spargl-by-example

e Learning SPARQL - Bob DuCharme

e http://learningspargl.com
e Disclaimer - | was a Technical Reviewer for the 29 Edition
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SPARQL Algebra

e Defined as part of the SPARQL Query specification

e http://www.w3.org/TR/sparqgll1-query/#sparqglDefinition
e A formal semantics for how to evaluate SPARQL queries

* Specification defines how to translate a query into an algebra

e In relational terms think of the SPARQL Algebra as being
the logical query plan

e Most high level optimization happens on the algebra
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SPARQL Algebra - SPARQL Set Expressions (SSE)

(slice _ 5
(project (?age ?count)
(order ((desc ?count))
(filter (> ?.0 1)
(extend ((?count ?.9))
(group (?age) ((?.0 (count ?age)))

(bgp
(triple ?x <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>)

(triple ?x <http://xmlns.com/foaf/0.1/age> ?age)
)))))))

e SPARQL Set Expressions (SSE) is a way of serializing SPARQL
Algebra defined as part of the Apache Jena project

e Lisp style nested set expression syntax
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Basic Graph Paiterns (BGPs)

foaf:Person

e Basic Graph Patterns (BGPs) are the lowest level unit of a
SPARQL query

e Comprised of some combination of individual triple patterns
e Expresses some pattern to be found in the graph

e Above example was visualized with
http://graves.cl/visualSparql/
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BGPs - Why are they relevant?

e BGPs translate into database scans over your backend
database

e SPARQL engines are free to implement the scans however
they wish
e Depends on underlying data storage, use of indices etc

e However most SPARQL engines treat each triple pattern as
an individual scan

e Therefore query engines need to be smart in how they order the scans
* e.g. feeding bindings from one scan to the next to give more specific scans
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What is SPARQL Optimization?

e Term can be used to mean several different things:
1. Rewriting the raw SPARQL Query
2. Rewriting the SPARQL Algebra
3. Low level query engine execution optimization

e We're going to cover all three today in varying levels of
details
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Tooling
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Section Overview

e Apache Jena
e ARQ
e TDB
e Fuseki

e Command line tools

e (qparse

* arq

e tdbloader/tdbloader2
e tdbquery

® Online services:

e spargl.org
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Apache Jena

e ASF project providing a RDF, SPARQL and Semantic Web

stack written in Java
e http://jena.apache.org

e Key components for us:

e Jena ARQ - SPARQL engine implementation
e Jena TDB - RDF triple store that uses ARQ as its SPARQL engine
e Jena Fuseki - A database server that can encapsulate TDB
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Apache Jena - ARQ

e ARQ is the module that provides the SPARQL engine
e SPARQL Parsing
e SPARQL Algebra
e SPARQL Optimization
e SPARQL Query and Update Evaluation

@ For this talk we're primarily interested in its API

e We'll reference various interfaces and concrete classes as we go along

e Javadoc at

http://jena.apache.org/documentation/javadoc/arq/
index.html
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Apache Jena - TDB

e Persistent disk based RDF store

e Uses memory mapped files to maximize database access
and query speeds

e If you're using the provided resources there are some pre-
built databases in the dbs/ directory

e We'll use these later in the tutorial
e Documentation at
http://jena.apache.org/documentation/tdb/index.html
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Apache Jena - Fuseki

e A database server that can be backed by TDB

@ Provides a bare bones web Ul
e New Ul currently in the work
@ Lets us easily launch a server connected to a TDB dataset for
testing
o E.g.

$> java -jar fuseki-server.jar --loc=path/to/db --update /ds

® --loc argument provides path to a TDB database directory
® --update argument enables writes

e /ds is the path used for the database in the web Ul and HTTP
interface

e Documentation at _ .
http://jena.apache.org/documentation/serving data/

index.htmi
| N
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Command Line Tools

e These are all part of the Apache Jena convenience binary
distribution

e Found in the tutorial resources under the apache-jena/bin
folder

e You'll need to first set the environment variable
JENA_HOME to the apache-jena directory

o *Nix - export JENA_HOME=/path/to/apache-jena
e Windows - set JENA HOME=C:\path\to\apache-jena

@ You can then run any of the scripts while in the bin/ folder

e Optionally you can add this to your PATH to be able to run

them from anywhere

o *Nix - export PATH=$JENA HOME/bin:$PATH
e Windows - set PATH=%JENA | _ HOME?%/bin; %PATH%
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Command Line Tools - gparse

Get algebra for a query

$> ./gparse --print op "SELECT * WHERE { FILTER(?unbound = <http://
constant>) }"

Get optimized algebra for a query
$> ./gparse --print opt "SELECT * WHERE { FILTER(?unbound = <http://
constant>) }"

e Supports various values for --print that allow you to inspect
the query in different ways

* op - Basic algebra

e opt - Optimized algebra

e plan - ARQ's execution plan

e query - Query with reformatting where applicable

e Can repeat --print multiple times to ask for multiple

formats
@ Or use --explain option to print query and optimized algebra
| Ny
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Command Line Tools - arq

Run a query
$> ./arq --data=TODO.ttl "SELECT * WHERE { ?s ?p ?0 }"

@ Provides a CLI for running queries
e --data argument provides data file to be queried
e Then simply provide the query to be executed
@ --results can be used to choose result format
e text - ASCII table
e xml - SPARQL Results XML
e json - SPARQL Results JSON
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Command Line Tools - tdbloader/idbloader2

tdbloader
$> ./tdbloader --loc /path/to/database data.ttl

tdbloader2
$> ./tdbloader2 --loc /path/to/new-database data.ttl

e tdbloader is a bulk loader for TDB
e tdbloader2 is an alternative bulk loader
e *Nix only
e Create only, can't be used to append to existing databases

@ Once created we can expose it via Fuseki or query it with
other command line tools like tdbquery
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Command Line Tools - tdbquery

tdbquery

$> ./tdbquery --loc /path/to/database "SELECT * WHERE { ?s ?p ?0 }"

e Similar to arq command except it queries a pre-built TDB
database

e Useful if you want to query without standing up a Fuseki
server/writing code

e Downside is you pay startup costs on every query and get
minimal cache benefits
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Online Tools - sparql.org

@ Service provided by the Jena project
e http://spargl.org

e Installation of Fuseki with a couple of toy in-memory
databases to play with

e Provides web based interfaces that have similar functions
to the CLI tools already seen

e e.g. Query Validator lets you see raw and optimized algebra
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BGP Optimization
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Section Overview

® What is it?
e Reordering Strategies
e Configuring with Jena
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What is it?

@ As already discussed BGPs are a low level operation in
SPARQL essentially representing a DB scan

e Therefore the order in which scans are performed and
whether results from scans inform subsequent scans are
important

e Three main reordering strategies:

e None
e Heuristics
e Statistics

e Often a configuration option in a SPARQL engine
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Reordering Strategies - None

e No pattern reordering is done
e How is this an optimization?

e Useful in the case where the user wants to manually control the order of operation
* You may have a query that exhibits pathological execution behavior unless the exact
execution order is followed
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Reordering Strategies - Heuristic

e Sometimes known as fixed

@ Uses heuristic rules about the approximate selectivity of
triple patterns

e Typically favors putting patterns with more constants first

e Exact heuristics vary by implementation
e The ReorderFixed class encodes Jena's implementation of this

e Tends to do a good job most of the time
e Very data dependent
e Datasets that don't match the assumptions of the rules may see poor performance e.g.
DBPedia (http://dbpedia.org)
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Reordering Strategies - Statistics

@ Using statistics about the data either directly or indirectly

to decide how to order the triple patterns

* May use statistics directly o
e May generate rules based on the statistics

e Like the Heuristic strategy the aim is to put patterns
deemed more selective first

e Assuming the data does not change then this is often the
most effective strategy

e For data that changes you either need to keep the statistics up to date
e Oruse the derived rules approach as accuracy of rules is typically less directly affected by
changes to the data

e Jena's implementation is encoded in the ReorderWeighted
and StatsMatcher classes

e Statistic based strategy may get worse as complexity of

BGP increases:

e http://www.csd.uoc.gr/~hy561/papers/storageaccess/optimization/Characteristic
%20Sets.pdf
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Reordering Strategies - Example

$> ./tdbquery --time --loc dbs/none --query queries/sp2b 2.rq --repeat 5
$> ./tdbquery --time --loc dbs/fixed --query queries/sp2b 2.rq --repeat 5
$> ./tdbquery --time --loc dbs/stats --query queries/sp2b 2.rq --repeat 5

@ Try running the above commands

e The dataset is very small (250,000) triples so difference is
negligible but you will see a small difference

e Small differences add up as you scale upwards
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Configuring with Jena

e For Jena TDB:

Place a .opt file in in the database directory

Use none.opt for no reordering or fixed.opt for heuristic reordering

Use the tdbstats tool to generate a statistics file stats.opt for statistics based reordering
See http://jena.apache.org/documentation/tdb/optimizer.html for more information

e For stock Jena:

e The None strategy is used by default
e A custom optimizer must be written to introduce an alternative strategy - more on this later
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Algebra Optimization
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Section Overview

e Formal Algebra vs ARQ Algebra
e QOperators
e Quick Reference

e Algebra Optimization in ARQ

e Limitations
e Optimization vs Performance Trade Offs
e Rewrite interface

e Transformer and ExprTransform interfaces

e Algebra Optimizations

e Importance of ordering
e ARQ Standard Optimizer
e Examples and Discussion of Optimizations
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Formal Algebra vs ARQ Algebra

e ARQ has its own API for representing SPARQL Algebra
e Mostly 1-1 relationship to formal algebra

e Some differences for extensions, optimizations etc.
e See later Quick Reference section for an overview of mapping from SPARQL operations to
algebra

@ Also has a string serialization of the algebra using a syntax
called SPARQL Syntax Expressions (SSE)

e http://jena.apache.org/documentation/notes/sse.html

e We often use the string serialization as output for
debugging and discussion

e Examples later in these slides will use SSE to show the
algebra
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ARQ Algebra - Operators

e Algebra elements are referred to in ARQ as operators

e Top level interface is the Op interface
e 0Op0, Opl, Op2 and OpN are the more specific interfaces

o Several classes of operators:
Terminals — Match some data in the store
e Unary— Apply some operation to the results of an inner operator

* Binary — Apply some operation to the results of two inner operators, first inner operator (LHS)
is always evaluated first

e Nary - Apply some operation to the results of N inner operators evaluated in order

e Algebra is evaluated bottom up

e Ifyou think of it as a tree the left most leaf node gets evaluated first
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ARQ Algebra - Quick Reference 1/2
SpaRQL Operatr/Cluse | ARQAlgebraClass | ssEform

SELECT ?var
DISTINCT
REDUCED
Project Expression/BIND
Empty BGP
BGP
FILTER/HAVING
Joins

GRAPH

UNION
OPTIONAL
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OpProject
OpDistinct
OpReduced
OpExtend/OpAssign
OpTable
OpBgp/OpQuadPattern
OpFilter

OpJoin

OpGraph

OpUnion

OplLeftloin

project

distinct

reduced
extend/assign
table unit
bgp/quadpattern
filter

join

graph

union

leftjoin




ARQ Algebra - Quick Reference 2/2
SPARQL Operator/Clause | ARQ AlgebraClass _____|SSEForm

MINUS OpMinus minus
LIMIT and/or OFFSET OpSlice slice
GROUP BY and Aggregates OpGroupBy group
ORDER BY OpOrderBy order
VALUES OpTable table
ARQisms
OpPropFunc propfunc
OpTable table empty
OpExt
OpSequence sequence
OpConditional conditional
OpDisjunction disjunction
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Limitations of Algebra Optimization

e In ARQ at least algebra optimization is done with zero
knowledge of the data

e Therefore all optimizations are static transformations on
the raw algebra generated from the query
e Must preserve evaluation semantics

e Executing the optimized the algebra must result in the same results as executing the raw
algebra

e Typically conservative

e Ifit cannot decide whether an optimization preserves semantics it won’t apply it
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Optimization vs Perfformance Trade Off

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

MY CODE'S COMPILING.”

HEY! GET BACK
T0 WORK!
Bl

\

® There js a trade off between the amount of time you spend

analyzing & transforming the query and the per ormance gains of
those transformations

e If an optimization is too specialized then th? co%t to t}f]\(% SI:;[ ‘1;
outweig ene

testln or that situation on every query wil
of applying the optimization

@ XKCD - CC-BY-NC 2.5 - http://xkcd.com/303/
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Rewrite interface

e The Rewrite interface is a trivial interface used for
optimizers
* Single rewrite(Op op) method
e Related RewriterFactory interface is used to select which
optimizer to use

e You can substitute your own custom optimizer by setting a RewriterFactory with the
Optimize.setFactory() method

e ARQ's standard optimizer is the Optimize class

e Individual parts can be turned off through global configuration settings e.g.

// In Java Code
ARQ.getContext().set(ARQ.optFilterPlacement, false);

// With command line tools
--set http://jena.hpl.hp.com/ARQ#optFilterPlacement=false
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Transformer and ExprTransform interface

e Transformer interface is used to implement specific
transformations on algebra

e Similarly ExprTransform does the equivalent for expressions

e Both applied as bottom up transformations

e Each method receives the original operator/expression plus
the results of transforming any inner operator(s)/
expression(s)

e Means transformations are applied potentially multiple times in complex algebras

e In principle a transformer can throw out inner transformations in favour of alternative
transformations at a higher level

e TransformCopy provides a standard base implementation

¢ |Implements all methods as simple copy operations
e Means we only need to implement specific methods we want to override
e Similarly ExprTransformCopy for expressions

e Lots of nice example implementations in ARQ
e Let's take a look at a couple of examples
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Importance of ordering

e The order in which optimizations are applied matters

e For example there are some optimizations which enable
other optimizations

e Sometimes there is a specific and general version of an
optimization
e The specific version gives bigger benefits but applies in fewer cases
e The general version yields smaller benefits but applies in more cases
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ARQ Standard Optimizer

Variable Scope Renaming 15.  Filter Equality
Constant Folding 16. Filter Inequality
Property Functions 17. Table Empty promotion
Filter Conjunction (&&) 18. Merge BGPs
Filter Expand One Of

Filter Implicit Join

Implicit Left Join

Filter Disjunction (| |)

Top N Sorting

ORDER BY + DISTINCT

DISTINCT to REDUCED

Path Flattening

Index Join Strategy

Filter Placement

W 0 N O U e W DNRE

e T S
> w N RO
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Variable Scope Renaming

e® Renames variables in the algebra to ensure that any
potential scope clashes are avoided

e Particularly relevant for sub-queries
e Scope clashes can also be introduced by complex nested queries

e Done early so that later optimization steps don't perform
semantically invalid optimizations

e See TransformVarScopeRename for implementation
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Constant Folding

Original Algebra

(project (?value)
(extend ((?value (* 2 2)))
(table unit)))

Optimized Algebra
(project (?value)
(extend ((?value 4))
(table unit)))

e Where possible pre-evaluate all/part of some expressions
e Similar to what compilers do with code
e Avoids making the engine repeat simple calculations

e Important to remember we're working in RDF Nodes not
native Java data types i.e. type casting involved

e See ExprTransformConstantFolding for implementation
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Property Functions

e Property Functions are a SPARQL extension supported by
ARQ

e Property Functions are expressed as some number of triple
patterns in a single BGP

e TransformPropertyFunctions contains the relevant
implementations

e Finds relevant triple patterns and transforms them into the relevant OpPropFunc algebra
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Filter Conjunction (&&)

e Combines filters that use && expressions into flat
expression lists

e Makes it easier to extract and optimize specific conditions
in later optimization steps

@ This is primarily an ARQism
e See TransformFilterConjunction for implementation
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Filter Expand One Of

e Turns IN expressions into the equivalent | | expression

e Allows for later optimization steps to better optimize the
individual filter conditions

* e.g. Filter Placement and Filter Disjunction (| |)

e This is actually specification motivated
o See http://www.w3.org/TR/spargll1-query/#func-in

e See TransformExpandOneOf for implementation
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Filter Expand One Of - Example

Original Algebra

(filter (in ?s <http://x> <http://y>)
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
))

Optimized Algebra
(filter (|| (= ?s <http://x>) (= ?s <http://y>))
(bgp

(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
))
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Filter Implicit Join

e Applies where a filter denotes an implicit join
o eg FILTER (?x="7?y)
o e.g. FILTER (SAMETERM(?x, ?y))
e Requires that we can guarantee that at least one of the

variables cannot be a literal
e Substitutes one variable for the other

e Introduces an extend operator to ensure the other variable
remains visible outside of the filtered operation

e The other variable may be used elsewhere in the algebra for a larger query

e Can yield huge performance improvements

e Where implicit joins are present there is often a cross product
e Much more efficient to do a constrained join than to do an unconstrained cross product and
filter over it

e See Transformimplicitloin for implementation
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Filter Implicit Join - Example

Original Algebra
(filter (= ?s ?t)
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
(triple ?t <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

)

Optimized Algebra

(extend ((?s ?t))

(bgp
(triple ?t <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
(triple ?t <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

)
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Implicit Left Join

e Applies where the filter in a left join denotes an implicit join

e Requires that we can guarantee that at least one of the
variables cannot be a literal

e Substitutes one variable for another

e Essentially a variation on Filter Implicit Join specific to Left
Joins (i.e. OPTIONAL)

e Uses an extend to ensure the other variable remains visible
outside the RHS

e The other variable may be used elsewhere in the algebra for a larger query
e Can yield huge performance improvements

e Where implicit joins are present there is often a cross product
e Much more efficient to do a constrained join than to do an unconstrained cross product and
filter over it

e See TransformimplicitLeftloin for implementation
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Implicit Left Join - Example

Original Algebra
(leftjoin
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://
type>))
(bgp

(triple ?t <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://
anotherType>))

(= ?s ?t))
Optimized Algebra
(leftjoin
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://
type>))
(extend ((?t ?s))
(bgp

(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://anotherType>)

)))
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Filter Disjunction (| |)

e Applies where there are multiple equality constraints
combined with | |

e Substitute each constant into the inner algebra separately
and uses union to combine the results

e Uses an extend to ensure the eliminated variable remains
visible outside of the filtered operation

e The other variable may be used elsewhere in the algebra for a larger query

e Can yield good performance improvements

e Equality constraints can cause too much data to be retrieved by the inner algebra
e Often much more efficient to do several more specific scan than to do a single more generic
scan and filter over it

e See TransformFilterDisjunction for implementation
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Filter Disjunction (| |) - Example

Original Algebra
(filter (|| (= ?s <http://x>) (= ?s <http://y>))
(bgp

(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
))

Optimized Algebra
(union
(extend ((?s <http://x>))
(bgp

(triple <http://x> <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#type> ?type)

))
(extend ((?s <http://y>))
(bgp

(triple <http://y> <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#ttype> ?type)

)))
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Top N Sorting

e Used when there is a LIMIT/OFFSET and an ORDER BY
e Stores only the N top intermediate results seen

e Avoids a full sort of all intermediate results
e Reduces memory usage during query execution

e Can optionally also include a DISTINCT/REDUCED condition

e Again reduces memory usage during query execution

e See TransformTopN for implementation
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Top N Sorting - Example

Original Algebra
(slice _ 10
(order (?type)

§?§§ (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type

Optimized Algebra
(top (10 ?type)

(b§§)(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> °?
type
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ORDER BY + DISTINCT

e SPARQL states that DISTINCT happens after ORDER BY

e However where there are a large number of non-distinct
results doing that ordering first can harm performance

e In some cases it is safe to move the DISTINCT before the
ORDER BY and this can yield big performance gains

e Requires that the query selects specific variables and that the ORDER BY does not use any
variables that are not projected

e This is broadly equivalent to wrapping everything except

the ORDER BY in a sub-query with SELECT DISTINCT applied
toit

e See TransformOrderByDistinctApplication for
implementation
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ORDER BY + DISTINCT - Example

Original Algebra

(distinct
(project (?s)
(order (?s)

(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> °?
type)
))))
Optimized Algebra
(order (?s)
(distinct
(project (?s)
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> °?
type)
))))
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DISTINCT to REDUCED

@ Replaces DISTINCT with REDUCED
e Often this gives the same effect as a DISTINCT

e In ARQ REDUCED eliminates only adjacent duplicates - very memory efficient
e When ORDER BY is used as well almost certainly identical behaviour to DISTINCT

e See TransformDistinctToReduced for implementation
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Path Flattening

e Some simple property paths can be flattened into simpler
and more efficient algebra

e Flattens simple property paths

e Sequence
e Inverse

e Primarily only flattens property path syntax that can be

considered convenience syntax
e i.e. where they could be written as standard graph patterns

e See TransformPathFlattern for implementation
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Path Flattening - Example

Original Algebra

(graph <urn:x-arq:DefaultGraphNode>
(path ?s (seq <http://predicate> <http://label>) ?subItemlLabel))

Optimized Algebra

(bgp
(triple ?s <http://predicate> ??P0O)
(triple ??PO <http://label> ?subItemLabel)
)
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Index Join Strategy

e ARQ heavily relies on the use of indexed joins to improve
performance
e Flows intermediate results from one part of the query to the next
e Analyses the algebra looking for portions of the query
where indexed joins can be safely applied
* i.e. where variable scoping rules permit a linearization of the join
e Three forms depending on the type of join operation
involved

e OpSequence for standard joins
e OpConditional for left joins
e OpDisjunction for unions

e See TransformJoinStrategy for implementation
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Index Join Strategy - Example

Original Algebra

(leftjoin

(b§§ (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type
(bgp (triple ?s <http://p> ?0)))

Optimized Algebra

(conditional

(b§§ (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type
(bgp (triple ?s <http://p> ?0)))
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Filter Placement

@ Takes filter conditions and tries to push them deeper into
the query

e i.e.aims to make filters be applied as early as possible and so limit the intermediate results
earlier in the query execution

e May place individual conditions in different places in the
query

@ Sometimes this can have adverse effects because it can
split BGPs

e This may introduce cross products which is undesirable for some systems
e Can be configured to place filters without splitting BGPs

e See TransformFilterPlacement for implementation
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Transform Filter Placement - Example

Original Algebra

(filter (> ?0 10)
(union

§?gp (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type
(bgp (triple ?x <http://p> ?0))))
Optimized Algebra
(filter (> ?0 10)
(union

(bgp (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type))
(filter (> ?0 10)

(bgp (triple ?x <http://p> ?0)))))
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Filter Equality

e Applies where a FILTER compares a variable against a

constant
e e.g. FILTER(?x = <http://constant>)
o e.g. FILTER(SAMETERM(?x, <http://constant>)

e Substitutes the constant for the variable

e Uses an extend to ensure the substituted variable remains
visible outside of the filtered operation

e The other variable may be used elsewhere in the algebra for a larger query

e Can yield huge performance improvements

e Equality constraints can cause too much data to be retrieved by the inner algebra
e Often much more efficient to do a more specific scan than to do a more generic scan and filter
over it

e See TransformFilterEquality for implementation
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Filter Equality - Example

Original Algebra

(filter (= ?s <http://constant>)

(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)

)

Optimized Algebra

(extend ((?s <http://constant>))

(bgp
(triple <http://constant> <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#type> ?type)

)
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Filter Inequality

e Experimental optimization for where a FILTER compares a

variable for inequality against a constant
e e.g. FILTER(?x = <http://constant>)

e Constant must be non-literal
e Currently off by default

e Use optFilterinequality key to enable

e Transforms the query to use MINUS and VALUES to
subtract the solutions the user is not interested in

e Takes advantage of the fact that joins are typically more performant than filters

e Testing shows limited performance gains depending on the
number of variables involved

e See TransformFilterinequality for implementation
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Filter Inequality - Example

Original Algebra

(filter (!= ?type <http://type>)

(b§§)(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> °?
type

Optimized Algebra

(minus

(b§§ (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type
(table (vars ?type)
(row [?type <http://type>])
))
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Table Empty Promotion

e Some optimizations can produce the special (table empty)
operator

e This denotes that the optimizer has determined that part of
the query will evaluate to no results

¢ Allows the engine to skip evaluating it entirely

e In many cases this may mean a larger portion of the query
than initially identified actually returns no results

e Due to SPARQL evaluation semantics e.g. join

e Promotes the operator up the tree to skip the largest
portion of evaluation possible
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Merge BGPs

e Applies where there are adjacent basic graph patterns
joined together

e Combines them into a single graph pattern i.e. eliminates
the join

e Allows the database layer to have more control over the
order in which it does the scans

e Can sometimes eliminate unintentional cross products
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Merge BGPs - Example

Original Algebra
(join
(bgp
(triple ?s <http://predicate> ?value))
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
))

Optimized Algebra
(bgp

(triple ?s <http://predicate> ?value)

(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
)
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Writing Better Queries
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Value Equality vs Term Equality

e The = operator in SPARQL is value equality, while the
SameTerm() function provides term equality
e Value equality looks at the value of the term
e eg.1=1.0=>true
e So things that don't have the same RDF representation can be considered equal like the

integer and decimal in the above example
e Requires the database to inspect the value of the term

e Term equality looks at the precise term only

o e.g.SameTerm(1, 1.0) =>false
e Means the database can do the comparison purely on the internal identifiers

e Term equality is only different from value equality for
literals

e Always use term equality for URIs or in situations where

you expect literal values to be clean and consistent
e e.g..where you known 1 is always stored as 1 and never as 1.0
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Simplifying Expressions

e If you have expressions that contain operations on
constants try to simplify the expressions to use as few as
constants as possible

e Otherwise you may be requiring the database engine to do
a trivial part of the calculation for you many times which
you could do once yourself

e For example:
e BIND (2 * 2 AS ?TwoSquared) => BIND(4 AS ?TwoSquared)

e Particularly relevant if you are encoding complex
conditions into expressions

e Any simplification you can do can improve the queries performance

e ARQ will try and do this anyway but may fail in complex
cases
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REGEX vs String Functions

e REGEX() is always an expensive function for any database

e SPARQL 1.1 added many useful string functions that can be
used to carry out a lot of tasks that could only be done with
REGEX() in SPARQL 1.0

o http://www.w3.org/TR/sparql11-guery/#func-strings

® CONTAINS() for finding strings containing a search string

@ STRSTARTS() and STRENDS() for finding strings with a given
prefix/suffix

e LCASE() and UCASE() can be used to help simulate case
insensitivity when not using REGEX()
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REGEX vs String Functions = CONTAINS()

REGEX Query

SELECT * WHERE {
# Some Patterns
FILTER(REGEX(?value, "search", "i"))

¥

CONTAINS Query

SELECT * WHERE {
# Some Patterns
FILTER(CONTAINS(LCASE(?value), "search"))

¥

® CONTAINS() can be used to filter for values that contain a
given string

e LCASE() can be used if case insensitive search is needed
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REGEX vs String Functions — STRSTARTS()

REGEX Query

SELECT * WHERE {
# Some Patterns
FILTER(REGEX(?value, "~http://"))

¥

STRSTARTS Query

SELECT * WHERE {
# Some Patterns
FILTER(STRSTARTS(?value, "http://"))

¥

® STRSTARTS() can be used to filter on values that start with a
specific string
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Avoid overly broad FILTERs

e Apply the FILTER as deeply in the query as you can
e i.e.assoon as all the relevant data needed to calculate your FILTER condition is available

e |f you have multiple filter conditions combined with && split the filter up into separate filters
where you can

¢ Doing so may allow you to apply the separate conditions deeper in the query

e Avoid using FILTER to do things that can be done other
Ways
e Especially true when that FILTER applies over a large portion of the query

e e.g. FILTER(?var = <http://constant>) which can be done by using a constant and a BIND
instead — see Filter Equality earlier in these slides

® While the optimizer tries to improve some queries with
overly broad filters these optimization cannot be safely
applied to all queries

e You as the query writer have more information about your intentions and the data being
queried
e e.g. Filter Equality
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Avoid SELECT * where unnecessary

® While SELECT * is useful during query development and
debugging once a query is in production using it can reduce
performance

® When you SELECT specific variables there are more
optimizations that can be applied to your query

@ Also less data for the database to transfer back to you
when your query completes
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Avoid DISTINCT where unnecessary

@ DISTINCT can be quite costly to compute in terms of

memory
e The system has to build a hash table/similar to detect and eliminate duplicates

e Unless you actually need to eliminate duplicate rows it is
better to avoid usage

e In some cases if you only need part of the results to be
distinct it may be better to push the DISTINCT down into a
sub-query

e Only applies over the portion of the query you require to give distinct results
e Avoids the DISTINCT being over the entire intermediate results

® Try using REDUCED instead
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Use LIMIT and OFFSET

e Use LIMIT and OFFSET wherever possible

e In many systems this can cause them to do less work
e Especially true when ORDER BY is also used

@ As you are asking for less data from the database there is
less 10 required to get your answers back
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Using VALUES to assign constants

e Using BIND to assign constants to several variables may
hurt performance

e Better to use VALUES to add in the constants you desire via
joining which may be more efficient

e Particularly useful if you are introducing multiple constants
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Customizing the Optimizer

YarcData C DN
A DIVISION OF CRAY INC. 'A



Section Overview

e Configuring the Standard Optimizer
e Writing a specific optimization
e Writing your own optimizer
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Configuring the Standard Optimizer

@ As alluded to earlier the various parts of the Standard
Optimizer can be turned on/off by configuration keys

o WhICh context should you change?

Use ARQ.getContext() to change the global context - applies to all subsequent queries

* Use getContext() on QueryExecution objects to change the query context - applies to only the
execution of that query

e Query context is populated from global context so you can set global options on the global
context and per-query options on the per-query context

e See the javadoc for the optimizer configuration keys
e http://jena.apache.org/documentation/javadoc/arg/com/hp/hpl/jena/query/
ARQ.html#field summary
e The fields beginning with opt are the relevant keys
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Writing a specific optimization

e Assuming an algebra optimization we'll start by extending
TransformCopy

e We then need to override all the relevant methods for
algebra we want to consider for optimization

e Example - Trivially true/false filters

e Optimize filters that can be evaluated in full without executing the query
e i.e.those that only use constants
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Writing your own Optimizer

@ As already noted we want to implement the Rewrite
interface

e In the rewrite() method want to apply a sequence of

Transformer's that implement the optimizations we care
about

e |deally you should wrap each application with a check as to whether the specific optimization
is enabled

e Depends on whether your optimizer will be used outside of your organization

e Finally register as the default optimizer by calling
Optimize.setFactory()

e Actually takes a RewriteFactory rather than a Rewrite but we can use a trivial anonymous
implementation to return our Rewrite implementation
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Questions?

Email: rvesse@apache.org
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