SPARQL Optimization 101

YarcData C DS
A DIVISION OF CRAY INC. 'A

About Me

e Software Engineer at YarcData, part of Cray Inc
* One of my responsibilities is the SPARQL Optimizer

e Have developed several database specific optimizations and run internal training sessions on
SPARQL optimization

e PMC Member and Committer on Apache Jena project

e Joined project in January 2012

e Have contributed implementations of several common SPARQL optimizations from the
literature

e Have also contributed some entirely new optimizations

e Lead developer on the dotNetRDF Project

e Developed two SPARQL engines over the past 5 years

YarcData

Procedural Notes

e Feel free to ask questions as we go along

e If I repeat the questions before | answer it's for the benefit of the audio recording

e USB sticks with resources relevant to the tutorial are
available

* You may need to share depending on number of attendees

@ Resources also available for download at TBC

e Or you can download just the tools at
http://jena.apache.org/download/

* Get both Apache Jena (the main distribution) and Jena Fuseki

@ Slides will be up on Slideshare at
http://www.slideshare.net/RobVesse

YarcData

Tutorial Schedule

Time Slot

Key Concepts 13:30-13:45
Tooling 13:45 - 14:15
BGP Optimization 14:15 - 14:30
Algebra Optimization 14:30 - 15:30
Writing Better Queries 15:30 - 16:00
Customizing the Optimizer 16:00 - 16:30

YarcData

A DMSION OF CRAY INC.

Key Concepts

YarcData C N
A DIVISION OF CRAY INC. 'A

Section Overview

® Key Concepts

SPARQL

SPARQL Algebra

Basic Graph Patterns (BGP)
What is SPARQL Optimization?

YarcData &9} @

SPARQL

e Declarative graph pattern matching query language for RDF
data

e Two versions:

e SPARQL 1.0 (Jan 2008) - http://www.w3.org/TR/rdf-spargl-query/
e SPARQL 1.1 (March 2013) - http://www.w3.org/TR/sparqgl11-overview/

e SPARQL 1.1 added many new features:

Grouping and Aggregation
Federated Query

Simpler negation constructs
Sub-queries

Update commands

e SPARQL is widely supported by APIs, tools and RDF
databases

e SPARQL 1.1 is fairly universally supported since it adds so many valuable new features
e http://www.w3.0rg/2009/sparqgl/implementations/

YarcData

SPARQL - Example Query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?age (COUNT(?age) AS ?count)
FROM <http://example.org/data.rdf>
WHERE

{

’X a foaf:Person ;
foaf:age rage .
}
GROUP BY ?age
HAVING (COUNT(?age) > 1)
ORDER BY DESC(?count)
LIMIT 5

YarcData

SPARQL - Execution Sequence

FROM . SPARQL 1.1 Core (SELECT)
(A0] SPARQL ity vems
grap 7 as | understand it - Dave Beckett

~. Version: 2011-06-16
~
AN Licensed under
s Creative Commens Attribution 3.0 United States License
SPARQL 1.1Federation Extensions ' ittp-/Awww. Gajobe. org/2009/11/spargi11/
SERVICE uri BINDINGS \ LemTTT -
graph pattern graph pattern) 2 " T
’ A \\
\ ~
multiset / solution set NN . \ AN
1 P & ," N ‘\\ PREFIX foaf\:~\<http: //xmlns.com/foaf/0.1/>
GROUP BY L _Dan-si SELECT ?age (*COUNT(?age) AS 2count)
’ . . .--"77 °_'\ FROM <http://example.org/data.rdf>
expression |®------o_______ S N
S \ WHERE {
EEVARN ?x a foaf:Person ;
P s~ H
s f Ss .
multiset / solution set per group S Tl) foaf:age ?age .
\i 2 \ T GROUP BY ?age
(agg expr. P e cme—ae—-
istin P ettt HAVING (?count > 1)
(,‘:’%gc;?gnas'f distinct) o TN e ORDER BY ?count DESC
S PN .~ LIMIT 5
multiset / solution set per group .~~~ Il K M —
- »”’ ' ~
\i " - . X N result can be turned into
g L7 ' . an input solution set
VGTQXLNG . i . e via sub SELECT
exp. P . .
N — ’ N S
multiset / solution set -~ . AT

L& A siced, &
ORDERBY | ordered ordered LIMIT & ‘ ordered Project
vossions B solution —=| DISTINCT solution —»| OFFSET solution ™1 variables and —wmresult
exp | seq seq sicing | SO expressions
—

CC-BY 3.0 - Dave Beckett - http://www.dajobe.org/2009/11/sparql11/

YarcData (G‘*'“‘ !c\

A DIVISION OF CRAY INC. '
“L 5 YT /Y

SPARQL - Learning More

e SPARQL by Example - Leigh Feigenbaum and Eric
Prud'hommeaux
e https://www.cambridgesemantics.com/en GB/semantic-university/spargl-by-example

e Learning SPARQL - Bob DuCharme

e http://learningspargl.com
e Disclaimer - | was a Technical Reviewer for the 29 Edition

YarcData C N
A DIVISION OF CRAY INC. "‘_

SPARQL Algebra

e Defined as part of the SPARQL Query specification

e http://www.w3.org/TR/sparqgll1-query/#sparqglDefinition
e A formal semantics for how to evaluate SPARQL queries

* Specification defines how to translate a query into an algebra

e In relational terms think of the SPARQL Algebra as being
the logical query plan

e Most high level optimization happens on the algebra

YarcData

SPARQL Algebra - SPARQL Set Expressions (SSE)

(slice _ 5
(project (?age ?count)
(order ((desc ?count))
(filter (> ?.0 1)
(extend ((?count ?.9))
(group (?age) ((?.0 (count ?age)))

(bgp
(triple ?x <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>)

(triple ?x <http://xmlns.com/foaf/0.1/age> ?age)
)))))))

e SPARQL Set Expressions (SSE) is a way of serializing SPARQL
Algebra defined as part of the Apache Jena project

e Lisp style nested set expression syntax

YarcData (e’)ﬁ‘%—l)G
e D N = A

Basic Graph Paiterns (BGPs)

foaf:Person

e Basic Graph Patterns (BGPs) are the lowest level unit of a
SPARQL query

e Comprised of some combination of individual triple patterns
e Expresses some pattern to be found in the graph

e Above example was visualized with
http://graves.cl/visualSparql/

YarcData

BGPs - Why are they relevant?

e BGPs translate into database scans over your backend
database

e SPARQL engines are free to implement the scans however
they wish
e Depends on underlying data storage, use of indices etc

e However most SPARQL engines treat each triple pattern as
an individual scan

e Therefore query engines need to be smart in how they order the scans
* e.g. feeding bindings from one scan to the next to give more specific scans

YarcData

What is SPARQL Optimization?

e Term can be used to mean several different things:
1. Rewriting the raw SPARQL Query
2. Rewriting the SPARQL Algebra
3. Low level query engine execution optimization

e We're going to cover all three today in varying levels of
details

YarcData C N
A DIVISION OF CRAY INC. "‘_

Tooling

YarcData C N
A DIVISION OF CRAY INC. 'A

Section Overview

e Apache Jena
e ARQ
e TDB
e Fuseki

e Command line tools

e (qparse

* arq

e tdbloader/tdbloader2
e tdbquery

® Online services:

e spargl.org

YarcData

Apache Jena

e ASF project providing a RDF, SPARQL and Semantic Web

stack written in Java
e http://jena.apache.org

e Key components for us:

e Jena ARQ - SPARQL engine implementation
e Jena TDB - RDF triple store that uses ARQ as its SPARQL engine
e Jena Fuseki - A database server that can encapsulate TDB

YarcData

Apache Jena - ARQ

e ARQ is the module that provides the SPARQL engine
e SPARQL Parsing
e SPARQL Algebra
e SPARQL Optimization
e SPARQL Query and Update Evaluation

@ For this talk we're primarily interested in its API

e We'll reference various interfaces and concrete classes as we go along

e Javadoc at

http://jena.apache.org/documentation/javadoc/arq/
index.html

YarcData

Apache Jena - TDB

e Persistent disk based RDF store

e Uses memory mapped files to maximize database access
and query speeds

e If you're using the provided resources there are some pre-
built databases in the dbs/ directory

e We'll use these later in the tutorial
e Documentation at
http://jena.apache.org/documentation/tdb/index.html

YarcData

Apache Jena - Fuseki

e A database server that can be backed by TDB

@ Provides a bare bones web Ul
e New Ul currently in the work
@ Lets us easily launch a server connected to a TDB dataset for
testing
o E.g.

$> java -jar fuseki-server.jar --loc=path/to/db --update /ds

® --loc argument provides path to a TDB database directory
® --update argument enables writes

e /ds is the path used for the database in the web Ul and HTTP
interface

e Documentation at _ .
http://jena.apache.org/documentation/serving data/

index.htmi
| N
YarcDeta & PO

Command Line Tools

e These are all part of the Apache Jena convenience binary
distribution

e Found in the tutorial resources under the apache-jena/bin
folder

e You'll need to first set the environment variable
JENA_HOME to the apache-jena directory

o *Nix - export JENA_HOME=/path/to/apache-jena
e Windows - set JENA HOME=C:\path\to\apache-jena

@ You can then run any of the scripts while in the bin/ folder

e Optionally you can add this to your PATH to be able to run

them from anywhere

o *Nix - export PATH=$JENA HOME/bin:$PATH
e Windows - set PATH=%JENA | _ HOME?%/bin; %PATH%

YarcData

Command Line Tools - gparse

Get algebra for a query

$> ./gparse --print op "SELECT * WHERE { FILTER(?unbound = <http://
constant>) }"

Get optimized algebra for a query
$> ./gparse --print opt "SELECT * WHERE { FILTER(?unbound = <http://
constant>) }"

e Supports various values for --print that allow you to inspect
the query in different ways

* op - Basic algebra

e opt - Optimized algebra

e plan - ARQ's execution plan

e query - Query with reformatting where applicable

e Can repeat --print multiple times to ask for multiple

formats
@ Or use --explain option to print query and optimized algebra
| Ny
vareDeta 6 5 e @0

Command Line Tools - arq

Run a query
$> ./arq --data=TODO.ttl "SELECT * WHERE { ?s ?p ?0 }"

@ Provides a CLI for running queries
e --data argument provides data file to be queried
e Then simply provide the query to be executed
@ --results can be used to choose result format
e text - ASCII table
e xml - SPARQL Results XML
e json - SPARQL Results JSON

YarcData

Command Line Tools - tdbloader/idbloader2

tdbloader
$> ./tdbloader --loc /path/to/database data.ttl

tdbloader2
$> ./tdbloader2 --loc /path/to/new-database data.ttl

e tdbloader is a bulk loader for TDB
e tdbloader2 is an alternative bulk loader
e *Nix only
e Create only, can't be used to append to existing databases

@ Once created we can expose it via Fuseki or query it with
other command line tools like tdbquery

YarcData

Command Line Tools - tdbquery

tdbquery

$> ./tdbquery --loc /path/to/database "SELECT * WHERE { ?s ?p ?0 }"

e Similar to arq command except it queries a pre-built TDB
database

e Useful if you want to query without standing up a Fuseki
server/writing code

e Downside is you pay startup costs on every query and get
minimal cache benefits

YarcData

Online Tools - sparql.org

@ Service provided by the Jena project
e http://spargl.org

e Installation of Fuseki with a couple of toy in-memory
databases to play with

e Provides web based interfaces that have similar functions
to the CLI tools already seen

e e.g. Query Validator lets you see raw and optimized algebra

YarcData

BGP Optimization

YarcData C N
A DIVISION OF CRAY INC. 'A

Section Overview

® What is it?
e Reordering Strategies
e Configuring with Jena

YarcData C:

Ny
2

What is it?

@ As already discussed BGPs are a low level operation in
SPARQL essentially representing a DB scan

e Therefore the order in which scans are performed and
whether results from scans inform subsequent scans are
important

e Three main reordering strategies:

e None
e Heuristics
e Statistics

e Often a configuration option in a SPARQL engine

YarcData

Reordering Strategies - None

e No pattern reordering is done
e How is this an optimization?

e Useful in the case where the user wants to manually control the order of operation
* You may have a query that exhibits pathological execution behavior unless the exact
execution order is followed

YarcData

Reordering Strategies - Heuristic

e Sometimes known as fixed

@ Uses heuristic rules about the approximate selectivity of
triple patterns

e Typically favors putting patterns with more constants first

e Exact heuristics vary by implementation
e The ReorderFixed class encodes Jena's implementation of this

e Tends to do a good job most of the time
e Very data dependent
e Datasets that don't match the assumptions of the rules may see poor performance e.g.
DBPedia (http://dbpedia.org)

YarcData

Reordering Strategies - Statistics

@ Using statistics about the data either directly or indirectly

to decide how to order the triple patterns

* May use statistics directly o
e May generate rules based on the statistics

e Like the Heuristic strategy the aim is to put patterns
deemed more selective first

e Assuming the data does not change then this is often the
most effective strategy

e For data that changes you either need to keep the statistics up to date
e Oruse the derived rules approach as accuracy of rules is typically less directly affected by
changes to the data

e Jena's implementation is encoded in the ReorderWeighted
and StatsMatcher classes

e Statistic based strategy may get worse as complexity of

BGP increases:

e http://www.csd.uoc.gr/~hy561/papers/storageaccess/optimization/Characteristic
%20Sets.pdf

YarcData

Reordering Strategies - Example

$> ./tdbquery --time --loc dbs/none --query queries/sp2b 2.rq --repeat 5
$> ./tdbquery --time --loc dbs/fixed --query queries/sp2b 2.rq --repeat 5
$> ./tdbquery --time --loc dbs/stats --query queries/sp2b 2.rq --repeat 5

@ Try running the above commands

e The dataset is very small (250,000) triples so difference is
negligible but you will see a small difference

e Small differences add up as you scale upwards

YarcData

Configuring with Jena

e For Jena TDB:

Place a .opt file in in the database directory

Use none.opt for no reordering or fixed.opt for heuristic reordering

Use the tdbstats tool to generate a statistics file stats.opt for statistics based reordering
See http://jena.apache.org/documentation/tdb/optimizer.html for more information

e For stock Jena:

e The None strategy is used by default
e A custom optimizer must be written to introduce an alternative strategy - more on this later

YarcData

A DMSION OF CRAY INC.

Algebra Optimization

YarcData C N
A DIVISION OF CRAY INC. 'A

Section Overview

e Formal Algebra vs ARQ Algebra
e QOperators
e Quick Reference

e Algebra Optimization in ARQ

e Limitations
e Optimization vs Performance Trade Offs
e Rewrite interface

e Transformer and ExprTransform interfaces

e Algebra Optimizations

e Importance of ordering
e ARQ Standard Optimizer
e Examples and Discussion of Optimizations

YarcData

Formal Algebra vs ARQ Algebra

e ARQ has its own API for representing SPARQL Algebra
e Mostly 1-1 relationship to formal algebra

e Some differences for extensions, optimizations etc.
e See later Quick Reference section for an overview of mapping from SPARQL operations to
algebra

@ Also has a string serialization of the algebra using a syntax
called SPARQL Syntax Expressions (SSE)

e http://jena.apache.org/documentation/notes/sse.html

e We often use the string serialization as output for
debugging and discussion

e Examples later in these slides will use SSE to show the
algebra

YarcData

ARQ Algebra - Operators

e Algebra elements are referred to in ARQ as operators

e Top level interface is the Op interface
e 0Op0, Opl, Op2 and OpN are the more specific interfaces

o Several classes of operators:
Terminals — Match some data in the store
e Unary— Apply some operation to the results of an inner operator

* Binary — Apply some operation to the results of two inner operators, first inner operator (LHS)
is always evaluated first

e Nary - Apply some operation to the results of N inner operators evaluated in order

e Algebra is evaluated bottom up

e Ifyou think of it as a tree the left most leaf node gets evaluated first

YarcData

A

ARQ Algebra - Quick Reference 1/2
SpaRQL Operatr/Cluse | ARQAlgebraClass | ssEform

SELECT ?var
DISTINCT
REDUCED
Project Expression/BIND
Empty BGP
BGP
FILTER/HAVING
Joins

GRAPH

UNION
OPTIONAL

YarcData

A DIMISION OF CRAY INC.

OpProject
OpDistinct
OpReduced
OpExtend/OpAssign
OpTable
OpBgp/OpQuadPattern
OpFilter

OpJoin

OpGraph

OpUnion

OplLeftloin

project

distinct

reduced
extend/assign
table unit
bgp/quadpattern
filter

join

graph

union

leftjoin

ARQ Algebra - Quick Reference 2/2
SPARQL Operator/Clause | ARQ AlgebraClass _____|SSEForm

MINUS OpMinus minus
LIMIT and/or OFFSET OpSlice slice
GROUP BY and Aggregates OpGroupBy group
ORDER BY OpOrderBy order
VALUES OpTable table
ARQisms
OpPropFunc propfunc
OpTable table empty
OpExt
OpSequence sequence
OpConditional conditional
OpDisjunction disjunction

YarcData

A DIMISION OF CRAY INC.

Limitations of Algebra Optimization

e In ARQ at least algebra optimization is done with zero
knowledge of the data

e Therefore all optimizations are static transformations on
the raw algebra generated from the query
e Must preserve evaluation semantics

e Executing the optimized the algebra must result in the same results as executing the raw
algebra

e Typically conservative

e Ifit cannot decide whether an optimization preserves semantics it won’t apply it

YarcData

Optimization vs Perfformance Trade Off

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

MY CODE'S COMPILING.”

HEY! GET BACK
T0 WORK!
Bl

\

® There js a trade off between the amount of time you spend

analyzing & transforming the query and the per ormance gains of
those transformations

e If an optimization is too specialized then th? co%t to t}f]\(% SI:;[‘1;
outweig ene

testln or that situation on every query wil
of applying the optimization

@ XKCD - CC-BY-NC 2.5 - http://xkcd.com/303/

YarcData

Rewrite interface

e The Rewrite interface is a trivial interface used for
optimizers
* Single rewrite(Op op) method
e Related RewriterFactory interface is used to select which
optimizer to use

e You can substitute your own custom optimizer by setting a RewriterFactory with the
Optimize.setFactory() method

e ARQ's standard optimizer is the Optimize class

e Individual parts can be turned off through global configuration settings e.g.

// In Java Code
ARQ.getContext().set(ARQ.optFilterPlacement, false);

// With command line tools
--set http://jena.hpl.hp.com/ARQ#optFilterPlacement=false

YarcData

Transformer and ExprTransform interface

e Transformer interface is used to implement specific
transformations on algebra

e Similarly ExprTransform does the equivalent for expressions

e Both applied as bottom up transformations

e Each method receives the original operator/expression plus
the results of transforming any inner operator(s)/
expression(s)

e Means transformations are applied potentially multiple times in complex algebras

e In principle a transformer can throw out inner transformations in favour of alternative
transformations at a higher level

e TransformCopy provides a standard base implementation

¢ |Implements all methods as simple copy operations
e Means we only need to implement specific methods we want to override
e Similarly ExprTransformCopy for expressions

e Lots of nice example implementations in ARQ
e Let's take a look at a couple of examples

YarcData

Importance of ordering

e The order in which optimizations are applied matters

e For example there are some optimizations which enable
other optimizations

e Sometimes there is a specific and general version of an
optimization
e The specific version gives bigger benefits but applies in fewer cases
e The general version yields smaller benefits but applies in more cases

YarcData

ARQ Standard Optimizer

Variable Scope Renaming 15. Filter Equality
Constant Folding 16. Filter Inequality
Property Functions 17. Table Empty promotion
Filter Conjunction (&&) 18. Merge BGPs
Filter Expand One Of

Filter Implicit Join

Implicit Left Join

Filter Disjunction (| |)

Top N Sorting

ORDER BY + DISTINCT

DISTINCT to REDUCED

Path Flattening

Index Join Strategy

Filter Placement

W 0 N O U e W DNRE

e T S
> w N RO

YarcData C N
A DIVISION OF CRAY INC. 'A

Variable Scope Renaming

e® Renames variables in the algebra to ensure that any
potential scope clashes are avoided

e Particularly relevant for sub-queries
e Scope clashes can also be introduced by complex nested queries

e Done early so that later optimization steps don't perform
semantically invalid optimizations

e See TransformVarScopeRename for implementation

YarcData

Constant Folding

Original Algebra

(project (?value)
(extend ((?value (* 2 2)))
(table unit)))

Optimized Algebra
(project (?value)
(extend ((?value 4))
(table unit)))

e Where possible pre-evaluate all/part of some expressions
e Similar to what compilers do with code
e Avoids making the engine repeat simple calculations

e Important to remember we're working in RDF Nodes not
native Java data types i.e. type casting involved

e See ExprTransformConstantFolding for implementation

YarcData (e‘*"‘%/)i

'A“&- ﬂ

Property Functions

e Property Functions are a SPARQL extension supported by
ARQ

e Property Functions are expressed as some number of triple
patterns in a single BGP

e TransformPropertyFunctions contains the relevant
implementations

e Finds relevant triple patterns and transforms them into the relevant OpPropFunc algebra

YarcData

Filter Conjunction (&&)

e Combines filters that use && expressions into flat
expression lists

e Makes it easier to extract and optimize specific conditions
in later optimization steps

@ This is primarily an ARQism
e See TransformFilterConjunction for implementation

YarcData

Filter Expand One Of

e Turns IN expressions into the equivalent | | expression

e Allows for later optimization steps to better optimize the
individual filter conditions

* e.g. Filter Placement and Filter Disjunction (| |)

e This is actually specification motivated
o See http://www.w3.org/TR/spargll1-query/#func-in

e See TransformExpandOneOf for implementation

YarcData

Filter Expand One Of - Example

Original Algebra

(filter (in ?s <http://x> <http://y>)
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
))

Optimized Algebra
(filter (|| (= ?s <http://x>) (= ?s <http://y>))
(bgp

(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
))

YarcData

Filter Implicit Join

e Applies where a filter denotes an implicit join
o eg FILTER (?x="7?y)
o e.g. FILTER (SAMETERM(?x, ?y))
e Requires that we can guarantee that at least one of the

variables cannot be a literal
e Substitutes one variable for the other

e Introduces an extend operator to ensure the other variable
remains visible outside of the filtered operation

e The other variable may be used elsewhere in the algebra for a larger query

e Can yield huge performance improvements

e Where implicit joins are present there is often a cross product
e Much more efficient to do a constrained join than to do an unconstrained cross product and
filter over it

e See Transformimplicitloin for implementation

YarcData

Filter Implicit Join - Example

Original Algebra
(filter (= ?s ?t)
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
(triple ?t <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

)

Optimized Algebra

(extend ((?s ?t))

(bgp
(triple ?t <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
(triple ?t <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

)

YarcData

*type)
*type)

*type)
*type)

Implicit Left Join

e Applies where the filter in a left join denotes an implicit join

e Requires that we can guarantee that at least one of the
variables cannot be a literal

e Substitutes one variable for another

e Essentially a variation on Filter Implicit Join specific to Left
Joins (i.e. OPTIONAL)

e Uses an extend to ensure the other variable remains visible
outside the RHS

e The other variable may be used elsewhere in the algebra for a larger query
e Can yield huge performance improvements

e Where implicit joins are present there is often a cross product
e Much more efficient to do a constrained join than to do an unconstrained cross product and
filter over it

e See TransformimplicitLeftloin for implementation

YarcData

Implicit Left Join - Example

Original Algebra
(leftjoin
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://
type>))
(bgp

(triple ?t <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://
anotherType>))

(= ?s ?t))
Optimized Algebra
(leftjoin
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://
type>))
(extend ((?t ?s))
(bgp

(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://anotherType>)

)))

YarcData

Filter Disjunction (| |)

e Applies where there are multiple equality constraints
combined with | |

e Substitute each constant into the inner algebra separately
and uses union to combine the results

e Uses an extend to ensure the eliminated variable remains
visible outside of the filtered operation

e The other variable may be used elsewhere in the algebra for a larger query

e Can yield good performance improvements

e Equality constraints can cause too much data to be retrieved by the inner algebra
e Often much more efficient to do several more specific scan than to do a single more generic
scan and filter over it

e See TransformFilterDisjunction for implementation

YarcData

Filter Disjunction (| |) - Example

Original Algebra
(filter (|| (= ?s <http://x>) (= ?s <http://y>))
(bgp

(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
))

Optimized Algebra
(union
(extend ((?s <http://x>))
(bgp

(triple <http://x> <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#type> ?type)

))
(extend ((?s <http://y>))
(bgp

(triple <http://y> <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#ttype> ?type)

)))

YarcData

Top N Sorting

e Used when there is a LIMIT/OFFSET and an ORDER BY
e Stores only the N top intermediate results seen

e Avoids a full sort of all intermediate results
e Reduces memory usage during query execution

e Can optionally also include a DISTINCT/REDUCED condition

e Again reduces memory usage during query execution

e See TransformTopN for implementation

YarcData

Top N Sorting - Example

Original Algebra
(slice _ 10
(order (?type)

§?§§ (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type

Optimized Algebra
(top (10 ?type)

(b§§)(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> °?
type

YarcData

ORDER BY + DISTINCT

e SPARQL states that DISTINCT happens after ORDER BY

e However where there are a large number of non-distinct
results doing that ordering first can harm performance

e In some cases it is safe to move the DISTINCT before the
ORDER BY and this can yield big performance gains

e Requires that the query selects specific variables and that the ORDER BY does not use any
variables that are not projected

e This is broadly equivalent to wrapping everything except

the ORDER BY in a sub-query with SELECT DISTINCT applied
toit

e See TransformOrderByDistinctApplication for
implementation

YarcData

N
5 @
52 (N
@ BB LD

ORDER BY + DISTINCT - Example

Original Algebra

(distinct
(project (?s)
(order (?s)

(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> °?
type)
))))
Optimized Algebra
(order (?s)
(distinct
(project (?s)
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> °?
type)
))))
YarcData “4llﬁg: 4".
i =

DISTINCT to REDUCED

@ Replaces DISTINCT with REDUCED
e Often this gives the same effect as a DISTINCT

e In ARQ REDUCED eliminates only adjacent duplicates - very memory efficient
e When ORDER BY is used as well almost certainly identical behaviour to DISTINCT

e See TransformDistinctToReduced for implementation

YarcData C N
A DIVISION OF CRAY INC. "‘_

Path Flattening

e Some simple property paths can be flattened into simpler
and more efficient algebra

e Flattens simple property paths

e Sequence
e Inverse

e Primarily only flattens property path syntax that can be

considered convenience syntax
e i.e. where they could be written as standard graph patterns

e See TransformPathFlattern for implementation

YarcData

Path Flattening - Example

Original Algebra

(graph <urn:x-arq:DefaultGraphNode>
(path ?s (seq <http://predicate> <http://label>) ?subItemlLabel))

Optimized Algebra

(bgp
(triple ?s <http://predicate> ??P0O)
(triple ??PO <http://label> ?subItemLabel)
)

YarcData

Index Join Strategy

e ARQ heavily relies on the use of indexed joins to improve
performance
e Flows intermediate results from one part of the query to the next
e Analyses the algebra looking for portions of the query
where indexed joins can be safely applied
* i.e. where variable scoping rules permit a linearization of the join
e Three forms depending on the type of join operation
involved

e OpSequence for standard joins
e OpConditional for left joins
e OpDisjunction for unions

e See TransformJoinStrategy for implementation

YarcData

Index Join Strategy - Example

Original Algebra

(leftjoin

(b§§ (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type
(bgp (triple ?s <http://p> ?0)))

Optimized Algebra

(conditional

(b§§ (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type
(bgp (triple ?s <http://p> ?0)))

YarcData

Filter Placement

@ Takes filter conditions and tries to push them deeper into
the query

e i.e.aims to make filters be applied as early as possible and so limit the intermediate results
earlier in the query execution

e May place individual conditions in different places in the
query

@ Sometimes this can have adverse effects because it can
split BGPs

e This may introduce cross products which is undesirable for some systems
e Can be configured to place filters without splitting BGPs

e See TransformFilterPlacement for implementation

YarcData

Transform Filter Placement - Example

Original Algebra

(filter (> ?0 10)
(union

§?gp (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type
(bgp (triple ?x <http://p> ?0))))
Optimized Algebra
(filter (> ?0 10)
(union

(bgp (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type))
(filter (> ?0 10)

(bgp (triple ?x <http://p> ?0)))))

YarcData i

506

Filter Equality

e Applies where a FILTER compares a variable against a

constant
e e.g. FILTER(?x = <http://constant>)
o e.g. FILTER(SAMETERM(?x, <http://constant>)

e Substitutes the constant for the variable

e Uses an extend to ensure the substituted variable remains
visible outside of the filtered operation

e The other variable may be used elsewhere in the algebra for a larger query

e Can yield huge performance improvements

e Equality constraints can cause too much data to be retrieved by the inner algebra
e Often much more efficient to do a more specific scan than to do a more generic scan and filter
over it

e See TransformFilterEquality for implementation

YarcData

Filter Equality - Example

Original Algebra

(filter (= ?s <http://constant>)

(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)

)

Optimized Algebra

(extend ((?s <http://constant>))

(bgp
(triple <http://constant> <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#type> ?type)

)

YarcData

Filter Inequality

e Experimental optimization for where a FILTER compares a

variable for inequality against a constant
e e.g. FILTER(?x = <http://constant>)

e Constant must be non-literal
e Currently off by default

e Use optFilterinequality key to enable

e Transforms the query to use MINUS and VALUES to
subtract the solutions the user is not interested in

e Takes advantage of the fact that joins are typically more performant than filters

e Testing shows limited performance gains depending on the
number of variables involved

e See TransformFilterinequality for implementation

YarcData

Filter Inequality - Example

Original Algebra

(filter (!= ?type <http://type>)

(b§§)(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> °?
type

Optimized Algebra

(minus

(b§§ (triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?
type
(table (vars ?type)
(row [?type <http://type>])
))

YarcData

Table Empty Promotion

e Some optimizations can produce the special (table empty)
operator

e This denotes that the optimizer has determined that part of
the query will evaluate to no results

¢ Allows the engine to skip evaluating it entirely

e In many cases this may mean a larger portion of the query
than initially identified actually returns no results

e Due to SPARQL evaluation semantics e.g. join

e Promotes the operator up the tree to skip the largest
portion of evaluation possible

YarcData

Merge BGPs

e Applies where there are adjacent basic graph patterns
joined together

e Combines them into a single graph pattern i.e. eliminates
the join

e Allows the database layer to have more control over the
order in which it does the scans

e Can sometimes eliminate unintentional cross products

YarcData

Merge BGPs - Example

Original Algebra
(join
(bgp
(triple ?s <http://predicate> ?value))
(bgp
(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
))

Optimized Algebra
(bgp

(triple ?s <http://predicate> ?value)

(triple ?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type)
)

YarcData

Writing Better Queries

YarcData C =
A DVISION OF GRAY ING. 'A

Value Equality vs Term Equality

e The = operator in SPARQL is value equality, while the
SameTerm() function provides term equality
e Value equality looks at the value of the term
e eg.1=1.0=>true
e So things that don't have the same RDF representation can be considered equal like the

integer and decimal in the above example
e Requires the database to inspect the value of the term

e Term equality looks at the precise term only

o e.g.SameTerm(1, 1.0) =>false
e Means the database can do the comparison purely on the internal identifiers

e Term equality is only different from value equality for
literals

e Always use term equality for URIs or in situations where

you expect literal values to be clean and consistent
e e.g..where you known 1 is always stored as 1 and never as 1.0

YarcData

Simplifying Expressions

e If you have expressions that contain operations on
constants try to simplify the expressions to use as few as
constants as possible

e Otherwise you may be requiring the database engine to do
a trivial part of the calculation for you many times which
you could do once yourself

e For example:
e BIND (2 * 2 AS ?TwoSquared) => BIND(4 AS ?TwoSquared)

e Particularly relevant if you are encoding complex
conditions into expressions

e Any simplification you can do can improve the queries performance

e ARQ will try and do this anyway but may fail in complex
cases

YarcData A\s‘ / \A

S @
”A“‘:ﬁ-‘!—

REGEX vs String Functions

e REGEX() is always an expensive function for any database

e SPARQL 1.1 added many useful string functions that can be
used to carry out a lot of tasks that could only be done with
REGEX() in SPARQL 1.0

o http://www.w3.org/TR/sparql11-guery/#func-strings

® CONTAINS() for finding strings containing a search string

@ STRSTARTS() and STRENDS() for finding strings with a given
prefix/suffix

e LCASE() and UCASE() can be used to help simulate case
insensitivity when not using REGEX()

YarcData

D

REGEX vs String Functions = CONTAINS()

REGEX Query

SELECT * WHERE {
Some Patterns
FILTER(REGEX(?value, "search", "i"))

¥

CONTAINS Query

SELECT * WHERE {
Some Patterns
FILTER(CONTAINS(LCASE(?value), "search"))

¥

® CONTAINS() can be used to filter for values that contain a
given string

e LCASE() can be used if case insensitive search is needed

YarcData eﬁ}a‘i@‘{_\ﬂ

REGEX vs String Functions — STRSTARTS()

REGEX Query

SELECT * WHERE {
Some Patterns
FILTER(REGEX(?value, "~http://"))

¥

STRSTARTS Query

SELECT * WHERE {
Some Patterns
FILTER(STRSTARTS(?value, "http://"))

¥

® STRSTARTS() can be used to filter on values that start with a
specific string

YarcData &—p Q0

Avoid overly broad FILTERs

e Apply the FILTER as deeply in the query as you can
e i.e.assoon as all the relevant data needed to calculate your FILTER condition is available

e |f you have multiple filter conditions combined with && split the filter up into separate filters
where you can

¢ Doing so may allow you to apply the separate conditions deeper in the query

e Avoid using FILTER to do things that can be done other
Ways
e Especially true when that FILTER applies over a large portion of the query

e e.g. FILTER(?var = <http://constant>) which can be done by using a constant and a BIND
instead — see Filter Equality earlier in these slides

® While the optimizer tries to improve some queries with
overly broad filters these optimization cannot be safely
applied to all queries

e You as the query writer have more information about your intentions and the data being
queried
e e.g. Filter Equality

YarcData ee‘*"‘%lﬁ\

z. ‘&- ‘%

Avoid SELECT * where unnecessary

® While SELECT * is useful during query development and
debugging once a query is in production using it can reduce
performance

® When you SELECT specific variables there are more
optimizations that can be applied to your query

@ Also less data for the database to transfer back to you
when your query completes

YarcData

Avoid DISTINCT where unnecessary

@ DISTINCT can be quite costly to compute in terms of

memory
e The system has to build a hash table/similar to detect and eliminate duplicates

e Unless you actually need to eliminate duplicate rows it is
better to avoid usage

e In some cases if you only need part of the results to be
distinct it may be better to push the DISTINCT down into a
sub-query

e Only applies over the portion of the query you require to give distinct results
e Avoids the DISTINCT being over the entire intermediate results

® Try using REDUCED instead

YarcData

Use LIMIT and OFFSET

e Use LIMIT and OFFSET wherever possible

e In many systems this can cause them to do less work
e Especially true when ORDER BY is also used

@ As you are asking for less data from the database there is
less 10 required to get your answers back

YarcData

Using VALUES to assign constants

e Using BIND to assign constants to several variables may
hurt performance

e Better to use VALUES to add in the constants you desire via
joining which may be more efficient

e Particularly useful if you are introducing multiple constants

YarcData

Customizing the Optimizer

YarcData C DN
A DIVISION OF CRAY INC. 'A

Section Overview

e Configuring the Standard Optimizer
e Writing a specific optimization
e Writing your own optimizer

YarcData C

Ny
2

Configuring the Standard Optimizer

@ As alluded to earlier the various parts of the Standard
Optimizer can be turned on/off by configuration keys

o WhICh context should you change?

Use ARQ.getContext() to change the global context - applies to all subsequent queries

* Use getContext() on QueryExecution objects to change the query context - applies to only the
execution of that query

e Query context is populated from global context so you can set global options on the global
context and per-query options on the per-query context

e See the javadoc for the optimizer configuration keys
e http://jena.apache.org/documentation/javadoc/arg/com/hp/hpl/jena/query/
ARQ.html#field summary
e The fields beginning with opt are the relevant keys

YarcData

Writing a specific optimization

e Assuming an algebra optimization we'll start by extending
TransformCopy

e We then need to override all the relevant methods for
algebra we want to consider for optimization

e Example - Trivially true/false filters

e Optimize filters that can be evaluated in full without executing the query
e i.e.those that only use constants

YarcData

Writing your own Optimizer

@ As already noted we want to implement the Rewrite
interface

e In the rewrite() method want to apply a sequence of

Transformer's that implement the optimizations we care
about

e |deally you should wrap each application with a check as to whether the specific optimization
is enabled

e Depends on whether your optimizer will be used outside of your organization

e Finally register as the default optimizer by calling
Optimize.setFactory()

e Actually takes a RewriteFactory rather than a Rewrite but we can use a trivial anonymous
implementation to return our Rewrite implementation

YarcData

Questions?

Email: rvesse@apache.org

YarcData C N
A DVISION OF GRAY ING. 'A

References & Resources

URL

Apache Jena Downloads http://jena.apache.org/download/

SPARQL 1.0 Query http://www.w3.org/TR/rdf-spargl-query/

Specification

SPARQL 1.1 Overview http://www.w3.org/TR/sparqll1-overview/

SPARQL 1.1 http://www.w3.0rg/2009/sparql/implementations/

Implementation Report

SPARQL by Example https://www.cambridgesemantics.com/en GB/semantic-
university/spargl-by-example

Learning SPARQL http://learningsparqgl.com

Visual SPARQL http://graves.cl/visualSparql/

RDF Characteristic Sets http://www.csd.uoc.gr/~hy561/papers/storageaccess/

Paper optimization/Characteristic%20Sets.pdf

YarcData

A DIMISION OF CRAY INC.

Acknowledgments

Rightsholder

SPARQL 1.1 Execution Dave Beckett CC-BY 3.0 http://www.dajobe.org/2009/11/

Sequence sparqll11/
XKCD Compiling XKCD CC-BY-NC http://xkcd.com/303/
Comic 2.5

YarcData

A DMSION OF CRAY INC.

