
Security best practices for 
Apache web services
Security best practices for 
Apache web services



Agenda

• Security Advisories @ Apache
• Issues associated with the advisory process
• Apache CXF advisories + lessons learned
• Closing remarks



Speaker Introduction

Apache CXF
Apache Syncope

Apache Santuario
Apache Webservices



Security Advisories @ ApacheSecurity Advisories @ Apache



A Flaw is Discovered...

• Someone discovers a security flaw in an Apache project
• That someone could be a security researcher who has done 

extensive analysis of the codebase.
• Or it could be an end-user who is puzzled about the output 

of a particular configuration or use-case.
• Or it could be an Apache developer who suddenly realises 

that some part of the project is not behaving as it 
should.



Reporting the Issue

• How the issue is reported to the project tends to vary 
according to the type of discoverer.

• A security researcher will typically know to alert only a 
security expert associated with a project, or mail 
private/security@<project>.apache.org

• An Apache developer may just alert private@ also, or may 
keep it secret until it has been fixed.

• Non-Apache users/developers may not know the proper 
procedure for reporting the issue.



Verifying the Issue

• The first step is to verify that the security issue exists
• The next step is typically to write a test-case to reproduce 

the issue (can also help in verification of this issue).
• The project informs the discoverer of their conclusion + 

discuss/agree a possible fix
• The project alerts security@apache.org + receives a CVE 

number.

mailto:security@apache.org


Fixing the Issue

• The issue is fixed (possibly with a somewhat misleading or 
vague commit message).

• If the fix is complex or environment-specific, the issue 
reporter may be asked to validate the fix locally.

• The project team backports the fix to all active branches of 
the project (if applicable)

• The security team of the project drafts a CVE advisory, 
briefly describing the flaw, versions affected, the commit 
in which it was fixed, and the project versions that are 
fixed  



Releasing the Fix

• The Apache project releases versions which contain the fix 
for the advisory.

• The advisories are signed and typically then uploaded to a 
special “advisories” page on the project website.

• Example: http://cxf.apache.org/security-advisories.html
• The advisories are publicized via the project mailing lists, 

as well as various third-party security lists.



Issues associated with the 
advisory process
Issues associated with the 
advisory process



Premature Disclosure

• An end user may unwittingly publish the issue via logging a 
JIRA or some queries to a users@<project>.apache.org 
list.

• Example: CVE-2013-0239: Authentication bypass in the 
case of WS-SecurityPolicy enabled plaintext 
UsernameTokens.

• Was reported first in JIRA as issue CXF-4776: 
UsernameTokenValidator do not validate that password 
is not provided.



Premature Disclosure II

• Moderation of Apache mailing lists / JIRA not possible
• However we can change JIRA issues to only be seen by 

committers / PMC members
• Mitigate mailing list disclosures by taking any further 

comment “off-line”.
• Properly document reporting procedure for security issues 

on the project website.



Release timing

• Once an issue is fixed, the project must decide when to 
perform the next release

• A critical bug may warrant immediate release
• If other issues are in the works, a release may be delayed 

to avoid a drip-feed of security advisories
• Commercial factors may also come into play



Disclosure timing

• Once a release takes place, the project must decide when 
to release the advisory

• Normal practice is to disclose the advisory shortly after the 
release takes place

• It may be delayed to allow users time to upgrade
• The timing may also depend on external factors



Disagreements

• Disagreements can arise in a number of areas
• The issue reporter may not agree with the fix
• Developers may disagree on release timing
• There can be issues with back porting fixes
• A robust PMC will greatly help with these problems



Apache CXF advisories + 
lessons learned
Apache CXF advisories + 
lessons learned



Supporting edge-cases

• CVE-2013-0239: http://cxf.apache.org/cve-2013-0239.html
• Authentication bypass if a WS-Security UsernameToken 

element is sent with no password child element, when 
using WS-SecurityPolicy

• Root cause was to support deriving keys from 
UsernameTokens for signature

• Make sure supporting “edge-cases” doesn't weaken 
security!



Beware legacy features

• CVE-2012-5633: http://cxf.apache.org/cve-2012-5633.html
• Bypass of WS-Security processing if a HTTP GET request is 

issued to a service URL
• Caused by a legacy interceptor that allows some basic 

"rest style" access to a simple SOAP service. 
• Don't be afraid to remove legacy features when releasing 

new major versions!



Write negative tests

• CVE-2012-0803: http://cxf.apache.org/cve-2012-0803.html
• WS-Security Username Tokens not validated properly 

against the required policies.
• A malicious client could send a request to the endpoint 

with no UsernameToken, and the UsernameToken policy 
requirement would still be marked as valid!

• A negative test run as part of an automated process would 
have caught this.

• Good idea to review specs periodically - “what would 
happen if I sent the following message to...”



Avoid weak algorithms

• CVE-2011-2487: 
http://cxf.apache.org/note-on-cve-2011-2487.html

• Exploits a weakness of the PKCS#1 v1.5 public key 
encryption scheme

• Can be used to recover a symmetric encryption key
• Define what algorithms are acceptable (signature, 

encryption, etc.) + abort before processing a 
non-compliant algorithm.

• WS-SecurityPolicy is perfect for this.

http://cxf.apache.org/note-on-cve-2011-2487.html


Beware timing attacks

• Previous vulnerability essentially involved a timing attack 
on CXF/WSS4J

• In WS-Security, a symmetric key encrypts the payload, and 
is in turn encrypted by an asymmetric (public) key 
(typically)

• An adversary could conduct a timing attack to see whether 
an exception was thrown during the decryption of the 
symmetric key or not

• Solution was to generate a temporary key if this happened, 
making it harder to see when processing failed.



Beware old standards

• CVE-2011-1096: 
http://cxf.apache.org/note-on-cve-2011-1096.html

• Describes an attack on XML Encryption using CBC mode
• An adversary can use this to completely decrypt an 

encrypted request
• However, WS-SecurityPolicy specification does not define 

any “non-CBC” mode AlgorithmSuites!
• CXF introduced “custom” AlgorithmSuite values that use 

GCM mode – however, this is not interoperable.

http://cxf.apache.org/note-on-cve-2011-1096.html


Beware DoS attacks

• CVE-2013-2160: Denial of Service Attacks on Apache CXF
• Various XML-based attacks: Huge number of 

Elements/Attributes, deeply nested XML tree, hash 
collision attacks.

• The fix was to have configurable values for the above 
associated with the StAX XML parser (Woodstox).

• Use automated tools to see if your endpoints/stack is 
vulnerable!



Beware of Spoofing

• CVE-2012-3451: SOAP Action spoofing attack - 
http://cxf.apache.org/cve-2012-3451.html

• Possible to execute other web service operation by 
spoofing SOAP Action

• CVE-2013-2172: Java XML Signature spoofing attack
• Exploited a weakness in algorithm constraints for XML 

Signature “Canonicalization Method”.

http://cxf.apache.org/cve-2012-3451.html


Beware of XML!

• CVE-2010-2076: 
http://svn.apache.org/repos/asf/cxf/trunk/security/CVE-2
010-2076.pdf

• CXF processed Document Type Declarations (DTDs) in 
certain scenarios.

• CVE-2013-4517: 
http://santuario.apache.org/secadv.data/cve-2013-4517.t
xt.asc

• XML Signature DoS attacks based on allowing DTDs for 
transformations.

• Many other issues involve allowing XSLT/XPath

http://santuario.apache.org/secadv.data/cve-2013-4517.txt.asc
http://santuario.apache.org/secadv.data/cve-2013-4517.txt.asc


Closing remarksClosing remarks



Encourage openness

• The prompt + transparent handling of security advisories 
promotes confidence in a project

• Avoid excessive secrecy or the temptation not to disclose a 
vulnerability

• Having said that, no need to give “too much” information 
on how to reproduce an attack.

• It is also a good thing to build a relationship with security 
researchers / analysts



Questions


	Slide1
	Slide 2
	Slide 3
	Slide2
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

