
Turning NoSQL data into Graph 
Playing with Apache Giraph and Apache Gora

Team

Renato Marroquín
!
• PhD student:
• Interested in:

Information retrieval.
Distributed and scalable data management.

• Apache Gora:
PPMC Member
Committer.

• rmarroquin [at] apache [dot] org

Claudio Martella
• PhD student: LSDS @VU University Amsterdam.
• Interested in

Complex Networks.
Distributed and scalable infrastructures.

• Apache Girapher:
PPMC Member
Committer.

• claudio [at] apache [dot] org

Lewis McGibbney
• Scottish expat fae Glasgow
• Post Doc @Stanford University: Engineering Informatics
• Quantity Surveyor/Cost Consultant by  

profession
• Cycling mad
• Keen OSS enthusiast @TheASF  

and beyond
• lewismc [at] apacher [dot] org

Apache Gora

What is Apache Gora?
● Data Persistence : Persisting objects to Column stores, key-value

stores, SQL databases and to flat files in local file system of Hadoop
HDFS.

● Data Access : An easy to use Java-friendly common API for accessing
the data regardless of its location.

● Indexing : Persisting objects to Lucene and Solr indexes, accessing/
querying the data with Gora API.

● Analysis : Accesing the data and making analysis through adapters for
Apache Pig, Apache Hive and Cascading

● MapReduce support : Out-of-the-box and extensive MapReduce
(Apache Hadoop) support for data in the data store.

What is Apache Gora?
● Provides an in-memory data model and persistence for big data.
● Gora supports:

How does Gora work?
!
1.Define your schema using Apache AVRO.
2.Compile your schemas using Gora's Compiler.
3.Create a mapping between logical and physical layout.
4.Update gora.properties file to set back-end properties. 
 
Rock the NoSQL world!!!

How does Gora work?
1.Define your schema using Apache AVRO.

How does Gora work?
2.Compile your schemas using Gora's Compiler.
	 java -jar gora-core-XYZ-.jar  
" " o.a.gora.compiler.GoraCompiler.class  
" " " employee.avsc  
" " " gora-app/src/main/java/

How does Gora work?
2.Compile your schemas using Gora's Compiler.

How does Gora work?

3.Create a mapping between logical and physical layout.

How does Gora work?

4.Update gora.properties file to set back-end properties.

How does Gora work?
Rock the NoSQL world!

Apache Giraph

MapReduce and Graphs
• Plain MapReduce is not well suited for graph

algorithms because:
• Graph algorithms are iterative.
• Not intuitive in MapReduce.
• Unnecessarily slow

• Each iteration is a single MapReduce job with too much
overhead

• Separately scheduled
• The graph structure is read from disk
• The intermediate results are read from disks

• Hard to implement

Google's Pregel
• Introduced on 2010
• Based on Valiant's BSP
• “Think like a vertex” that can send messages to any vertex in the

graph using the bulk synchronous parallel programming model.
• Computation complete when all components complete.

• Batch-oriented processing
• Computation happens in-memory
• Master/slave architecture

Bulk synchronous parallel

Time

Processors

Barrier

Computation +  
Communication

Superstep

Open source implementations

• There are some such as:
• Apache Giraph
• Apache Hama
• GoldenOrb
• Signal/Collect

Apache Giraph
• Incubated since summer 2011
• Written in Java
• Implements Pregel's API
• Runs on existing MapReduce infrastructure
• Active community from Yahoo!, Facebook, LinkedIn, Twitter, and

more.
• It's a single Map-only job
• It runs on Hadoop in-memory.
• Fault tolerant

• Zookeeper for state, No SPOF

During execution time

Setup
● Load graph
● Assign vertices to workers
● Validate workers' health

Teardown
● Write results back
● Write aggregators back

Computer
● Assign messages to workers
● Iterate on active vertices
● Call vertices compute()

Synchronize
● Send messages to workers
● Compute aggregators
● Checkpoint

Giraph's components
• Master

• Application coordinator
• One active master at a time
• Assigns partition owners to workers prior to each superstep
• Synchronizes supersteps

• Worker – Computation & messaging
• Loads the graph from input splits
• Performs computation/messaging of its assigned partitions

• Zookeeper
• Maintains global application state

What is needed then?
• Your algorithm in the Pregel model.
• A VertexInputFormat to read your graph.  

e.g. <vertex><neighbor1><neighbor2>
• A VertexOutputFormat to write back the results. 

e.g. <vertex> <pageRank>
• You could define:

• A Combiner (for reducing number of messages sent/received)
• An Aggregator (for enabling global computation)

Running a Giraph job
• It is just like running Hadoop!
$HADOOP_HOME/bin/hadoop jar

giraph-examples-1.1.0-XXX-jar-with-dependencies.jar
o.a.g.GiraphRunner o.a.g.examples.SimpleShortestPathsComputation
-vif o.a.g.io.formats.JsonLongDoubleFloatDoubleVertexInputFormat
-vip /user/hduser/input/tiny_graph.txt
-vof o.a.g.io.formats.IdWithValueTextOutputFormat
-op /user/hduser/output/shortestpaths
-w 1

Apache Giraph + Apache Gora

The project idea
• Integrating Apache Gora with other cool projects.
• Provide access to different data stores out-of-the-

box for Apache Giraph.
• Give users more flexibility when deciding how to run graph

algorithms.
• Make the Hadoop Env bigger.
• Apply to for the Google Summer of Code Project.

The big picture

Integration hooks
• Vertices

Integration hooks
• Vertices

Integration hooks
• Edges

Integration hooks
• Edges

Integration hooks
• Key factory

Parameters offered
Label Description

giraph.gora.datastore.class Gora DataStore class to access to data from - required.

!giraph.gora.key.class Gora Key class to query the datastore - required.

giraph.gora.persistent.class Gora Persistent class to read objects from Gora - required.

giraph.gora.keys.factory.class Keys factory to convert strings into desired keys - required.

giraph.gora.output.datastore.class Gora DataStore class to write data to - required.

giraph.gora.output.key.class Gora Key class to write to datastore - required.

giraph.gora.output.persistent.class Gora Persistent class to write to Gora - required.

giraph.gora.start.key Gora start key to query the datastore.

giraph.gora.end.key Gora end key to query the datastore.

Rocks in the way
• Dependency issues.

• Supported versions by each project.
• Maven war for handling cyclic dependencies.

• Hadoop issues.
• Not all data stores support MapReduce out of the box.
• Finding what it is necessary to be in the classpath.

• Providing an API between both projects that is:
• Flexible.
• Simple.
• Pluggable.

So now what?
1.Create your data beans with Gora.

So now what?
2. Compile them.
java -jar gora-core-XYZ.jar o.a.gora.compiler.GoraCompiler.class vertex.avsc gora-app/src/main/java/

So now what?
3. Get your Gora files set up for passing them to Giraph.
	 Gora.properties
	 Gora-mapping-{datastore}.xml.

So now what?
4. Get your hooks in place.
	 GVertexInputFormat

So now what?
4. Get your hooks in place.
	 GVertexOutputFormat

So now what?
4. Get your hooks in place.
	 GVertexOutputFormat

So now what?
4. Get your hooks in place.
	 KeyFactory

So now what?
5. Run Giraph!
	 hadoop jar $GIRAPH_EXAMPLES_JAR org.apache.giraph.GiraphRunner !
 -files ../conf/gora.properties,../conf/gora-hbase-mapping.xml,../conf/hbase-site.xml!

 -Dio.serializations=o.a.h.io.serializer.WritableSerialization,o.a.h.io.serializer.JavaSerialization!

 -Dgiraph.gora.datastore.class=org.apache.gora.hbase.store.HBaseStore!

 -Dgiraph.gora.key.class=java.lang.String!

 -Dgiraph.gora.persistent.class=org.apache.giraph.io.gora.generated.GEdge!

 -Dgiraph.gora.start.key=0 -Dgiraph.gora.end.key=10!

 -Dgiraph.gora.keys.factory.class=org.apache.giraph.io.gora.utils.KeyFactory!

 -Dgiraph.gora.output.datastore.class=org.apache.gora.hbase.store.HBaseStore !

 -Dgiraph.gora.output.key.class=java.lang.String !

 -Dgiraph.gora.output.persistent.class=org.apache.giraph.io.gora.generated.GEdgeResult !

 -libjars $GIRAPH_GORA_JAR,$GORA_HBASE_JAR,$HBASE_JAR!

 org.apache.giraph.examples.SimpleShortestPathsComputation !

 -eif org.apache.giraph.io.gora.GoraGEdgeEdgeInputFormat !

 -eof org.apache.giraph.io.gora.GoraGEdgeEdgeOutputFormat !

 -w 1!

!

Future work

More complex schemas

Adding more data stores

Send us an email on the mailing lists

New serialization formats
• Different serialization formats beside Apache Avro.
!
!
!
!
!
!
• And others that could be interesting for handling different use

cases.

Thanks!

Q&A

References
• http://prezi.com/9ake_klzwrga/apache-giraph-distributed-graph-processing-in-the-cloud/
• http://de.slideshare.net/sscdotopen/large-scale
• http://www.slideshare.net/Hadoop_Summit/processing-edges-on-apache-giraph

http://prezi.com/9ake_klzwrga/apache-giraph-distributed-graph-processing-in-the-cloud/
http://de.slideshare.net/sscdotopen/large-scale
http://www.slideshare.net/Hadoop_Summit/processing-edges-on-apache-giraph

Bulk synchronous parallel model

• Computation consists of a series of “supersteps”
• Supersteps are an atomic unit of computation where operations can

happen in parallel
• During a superstep, components are assigned to tasks and receive

unordered messages from previous supersteps.
• Point-to-point messages

• Sent during a superstep from one component to another and then
delivered in the following supersteps.

• Computation completes when all components complete

