
Apache Linked Data Stack in Use



Building the Fusepool Platform 

on Apache Software.



About Fusepool
• European Union funded Research 

Project
Fusepool develops an user-adaptive «Living Knowledge Pool» for product development and re-search. 
Compared to existing search and knowledge management solutions, Fusepool provides two core benefits: the 
automated transformation of content from web-harvesting and participating organizations into structured 
Linked Open Data format and the automated group-specific optimization of knowledge finding and matching 
based on transfer learning from individual users. Instead of optimizing results only individually per user, 
Fusepool fuses anonymised user interactions to derive optimizations for specific user groups of users. 
Information mining and interlinking combine text mining, feature- and entity extraction with semantic web 
technologies. Content classification and entity identification enable automated enrichment and interlinking of 
information extracted from internal as well as web-harvested 'raw' content. In addition, Linked Open Data 
(LOD) from hundreds of data repositories such as Eurostat or DBPedia (Wikipedia) are accessed to pool 
knowledge related to the information need of the user. Moreover, 'raw' content that is 
transformed into machine-understandable content can be published as LOD for 
others to reuse it. 
Knowledge finding and matching refers to the semantics-aware search integrating content based on available 
metadata (e.g. classifications, entities) into a stream-lined application for finding and matching content to 
support the user's information needs. Advanced search features include refinement and 
filtering, query intent discovery, and proactive information gathering. In addition, recommendations 
provide the user with potentially relevant information and user dis/approval optimizes future 
recommendations. Visual analytics and graphical user interfaces present intuitively the complex information 
and analytical results. Users can develop and share layouts and even layouts are able to adapt to user needs 
based on past user interactions. 



Linked Data Application
Some rather young members of the 
Apache family

• Jena

• Clerezza

• Stanbol

• Any23

• Marmotta



RDF and Linked Data
Do I need to explain?
• Serializations <-> data model

• Graphs / Triples

• IRIs / Blank Nodes / Literals

• Datasets

• Triplestore

• SPARQL

• Giant Global Graph (TimBL)

• Linked Open Data



• RDF API

• Sparql Engine

• Triple Store
• Embedded (TDB and others)

• Server (Fuseki)

• Reasoning
• OWL/RDFS

• Inference API



• RDF API
• Multiple backends: Jena, Virtuoso, Sesame

• Framework for building RDF backed Webapps
• Based on JAX-RS

• TypeHandlers

• Typerendering -> ScalaServerPages

• Content negotiation

• Security JAAS



• Original goal: reusable components for semantic 
content management

• Enhancer

• Entityhub

• Contenthub

• Reasoner

• Ontologymanager



Or more realistically:

•Enhancer
• Entityhub
• Contenthub

• Reasoner

• Ontologymanager



• Anything to triples

• Extracts RDF from a variety of input formats

• Can be used
• As a Java library

• On the command line

• Via HTTP



• Aims to implement the Linked Data Platform 
Standard

• Own Triple store: Kiwi (supports versioning, backed 
by SQL)

• Started from Kiwi Semantic Wiki Project (2008-2011)

• LDPath: Xpath for RDF

• LDPath Templates: Freemarker to render RDF 
resources



Fusepool
Fusing it together
• Extracting entities from plain text -> Stanbol 

Enhancer

• Authentication/Authorization -> RDF based in 
Clerezza

• Presenting the data -> Clerezza

• Faceted searching -> Stanbol Contenthub



What didn’t work.



Access Control

• Porting Authentication from Clerezza to Stanbol

• User Management in Stanbol

• Ensuring all stanbol modules work when security is 
enabled



Rendering the data

• Stanbol UI tied to Jersey

• Clerezza TypeRendering needs own JAX-RS impl (later 
Wink, JAX-RS 2.0)

1. Added RDF Rendering to Stanbol (using LDPath 
templates)

2. Removed Jersey dependency in Stanbol

3. Ported Clerezza TypeRendering to JAX-RS 2.0



Maven Archetypes
Showing development patterns
• Creating 

• Enhancement Engines

• Statefull/-less Webapplication

• Goals:
• Support Content Negotiation 

• Are portable accross JAX-RS implementations



ContentHub
Limit usefulness for fusepool because:
• Facet values (entities) not connected to RDF data

• Duplication of metadata in graph and SOLR

• No security by exposing SOLR endpoints

• No support for structured content

• HTTP API doesn’t speak RDF

• Hard to manage code



Enhanced Content Store
For now apache licensed on Github
• REST API to upload unstructured document
• Documents are assigned dereferenceable HTTP URI
• Enhancer executed on uploaded documents
• Documents as well as well as digested meta-data is stored 

to content graph
• HTTP-Meta header points to meta-data of documents
• Lucene based CRIS is configured to listen to graph 

changes and keep index up to date
• Faceted search exposed as RDF-REST-API



Interlinking
For now apache licensed on Github
• Framework for integrating Interlinkning Engine like 

Silk or Limes

• Datalifecycle taking care of
• Transformation

• Enhancemnet

• Interlinking

• Smushing



Discussion

• Do we still need language specific RDF APIs?

• How to best deal with overlapping apache projects?

• Research projects and apache communities.


