
Apache MRQL (incubating):
Advanced Query Processing for Complex,

Large-Scale Data Analysis

Leonidas Fegaras

University of Texas at Arlington

http://mrql.incubator.apache.org/

04/12/2015

Outline

Who am I?

Motivation

Design objectives

Overview of MRQL

Examples

Demo

Architecture

Current work

Future plans

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 2

About me

Leonidas Fegaras
fegaras@cse.uta.edu

Associate Professor at UTA (Univ. of Texas at Arlington)

A committer and PPMC member of Apache MRQL

Interested in big data management:

cloud computing, web data management, distributed computing,
data stream processing, query processing and optimization

Past projects:

HXQ: XQuery in Haskell
XStreamCast: query processing of streamed XML data
XQP: XQuery processing on P2P
XQPull: stream processing for XQuery
LDB: OODB query processing

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 3

History

Apache MRQL (incubating)

MRQL: a Map-Reduce Query Language

History:

Fall 2010: started at UTA as an academic research project

March 2013: enters Apache Incubation

3 releases under Apache so far: latest MRQL 0.9.4

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 4

Motivation

MapReduce is not the only player in the Hadoop ecosystem any more

designed for batch processing
not well-suited for some big data workloads:
real-time analytics, continuous queries, iterative algorithms, ...

Alternatives:

Spark, Flink, Hama, Giraph, ...

New distributed stream processing engines:

Spark Streaming, Flink Streaming, Storm, S4, Samza, ...

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 5

Motivation

Designed to relieve application developers from the intricacies of
big-data analytics and distributed computing

Steep learning curve

Hard to develop, optimize, and maintain non-trivial applications
coded in a general-purpose programming language

Hard to tell which one of these systems will prevail in the near future

applications coded in one of these paradigms may have to be rewritten
as technologies evolve

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 6

Motivation

... or you can express your applications in a query language that is
independent of the underlying distributed platform!

Does it have to be SQL? We’re noSQL after all!

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 7

Motivation

... or you can express your applications in a query language that is
independent of the underlying distributed platform!

Does it have to be SQL? We’re noSQL after all!

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 8

Design objectives

Wanted to develop a powerful and efficient query processing system
for complex data analysis applications on big data

more powerful than existing query languages
able to capture most complex data analysis tasks declaratively
able to work on read-only, raw (in-situ), complex data
HDFS as the physical storage layer
platform-independent:

the same query can run on multiple platforms on the same cluster
allowing developers to experiment with various platforms effortlessly

efficient!

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 9

Design objectives

We envision MRQL to be:

a common front-end for the multitude of distributed processing
frameworks emerging in the Hadoop ecosystem
a tool for comparing these systems (functionality & performance)

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 10

Oh great! yet another SQL for map-reduce

MRQL is NOT SQL!
MRQL is an SQL-like query language for large-scale, distributed data
analysis on a computer cluster

Unlike SQL, MRQL supports

a richer data model (nested collections, trees, ...)
arbitrary query nesting
more powerful query constructs
user-defined types and functions

no nulls, no outer-joins

MRQL queries can run on multiple distributed processing platforms

currently Apache Hadoop MapReduce, Hama, Spark, and Flink

The MRQL syntax and semantics have been influenced by

modern database query languages (mostly, XQuery and ODMG OQL)
functional programming languages (sequence comprehensions, algebraic
data types, type inference)

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 11

Language features

The MRQL query language:

provides a rich type system that supports hierarchical data and nested
collections uniformly

general algebraic datatypes (similar to Haskell)

JSON and XML are user-defined types

pattern matching over data constructions (similar to ’case’ in Haskell)
local type inference (similar to Scala)

allows nested queries at any level and at any place

no need for awkward nulls and outer-joins

supports UDFs

provided that they don’t have side effects

allows to operate on the grouped data using queries

as is done in OQL and XQuery
improves SQL group-by/aggregation (which are too awkward)

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 12

Language features

The MRQL query language:

supports custom aggregations/reductions using UDFs

provided they have certain properties (associative & commutative)

supports iteration declaratively

to capture iterative algorithms, such as PageRank

supports custom parsing and custom data fragmentation

provides syntax-directed construction/deconstruction of data

to capture domain-specific languages

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 13

How does MRQL compare to Hive?

MRQL Hive

metadata none stored in RDBMS

data
nested collections, trees, and
custom complex types

relational

group-by on arbitrary queries not on subqueries

aggregation
arbitrary queries
on grouped data

SQL aggregations

subqueries arbitrary query nesting limited subquery support
platforms Hadoop, Hama, Spark, Flink Hadoop, Tez, (Spark)

file formats text, sequence, XML, JSON text, sequence, ORC, RCFile
iteration yes no

streaming yes no

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 14

Simple example: matrix multiplication

A sparse matrix X is represented as a bag of (Xij , i , j).

Zij =
∑
k

Xik ∗ Ykj

select (sum(z), i, j)

from (x,i,k) in X, (y,k,j) in Y, z = x*y

group by i, j

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 15

An XML example

Group all persons according to their interests and the number of open
auctions they watch. For each such group, return the number of persons
in the group:

select (cat, os, count(p))

from p in XMARK,

i in p.profile.interest

group by cat: i.@category,

os: count(p.watches.@open_auctions)

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 16

Example: k-means clustering

Derive k clusters from a set of points P:

repeat centroids = ...

step select < X: avg(s.X), Y: avg(s.Y) >

from point in Points

group by k: (select c from c in centroids

order by distance(point,c))[0]

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 17

Example: the PageRank algorithm

Simplified PageRank:

A graph node is associated with a PageRank and its outgoing links:

< id: 23, rank: 0.0, adjacent : { 10, 45, 35 } >

Propagate the PageRank of a node to its outgoing links;
each node gets a new PageRank by accumulating the propagated
PageRanks from its incoming links:

repeat nodes = ...
step select < id: m.id, rank: n.rank, adjacent : m.adjacent >

from n in (select < id: key, rank: sum(c.rank) >
from c in (select < id: a,

rank: n.rank/count(n.adjacent) >
from n in nodes,

a in n.adjacent)
group by key: c. id),

m in nodes
where n.id = m.id

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 18

The complete PageRank using map-reduce (MR)

graph = select (key, n.to)
from n in source(line,“graph.csv”,...)
group by key: n.id; preprocessing: 1 MR job

size = count(graph);

select (x.id, x.rank)
from x in

(repeat nodes = select < id: key, rank: 1.0/size, adjacent: al >
from (key,al) in graph init step: 1 MR job

step select (< id: m.id, rank: n.rank, adjacent: m.adjacent >,
abs((n.rank-m.rank)/m.rank) > 0.1)

from n in (select < id: key, rank: 0.25/size+0.85*sum(c.rank) >
from c in (select < id: a, rank: n.rank/count(n.adjacent) >

from n in nodes, a in n.adjacent)
group by key: c.id),

m in nodes
where n.id = m.id) repeat step: 1 MR job

order by x.rank desc; postprocessing: 1 MR job

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 19

Demo

Demo link

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 20

http://lambda.uta.edu/mrql-demo.mp4

Architecture

Query translation stages:

1 type inference

2 query translation and normalization

3 simplification

4 algebraic optimization

5 plan generation

6 plan optimization

7 compilation to Java code

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 21

The essence of distributed data processing

distribute data to worker nodes (shuffling)

perform computations on each data partition

combine the results of these computations into one result

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 22

Algebraic operators

Algebraic operations on bags:

groupBy (X: {(κ, α)}) : {(κ, {α})}
flatMap (f: α→ {β}, X: {α}) : {β}
reduce (⊕: (α, α)→ α , X: {α}) : α
union (X: {α}, Y: {α}) : {α}

Extra operation (join):
coGroup (X: {(κ, α)}, Y: {(κ, β)}) : {(κ, {α}, {β})}

map-reduce = flatMap ◦ groupBy ◦ flatMap

List operations: orderBy, append

Iteration: repeat (f: {α} → {α}, X: {α}) : {α}

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 23

Query optimization

The query optimizer:

uses a cost-based optimization framework to map algebraic terms to
efficient workflows of physical operations

handles dependent joins (used for nested collections)

unnest deeply nested queries and converts them to join plans

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 24

Physical operations

Case study: Queries similar to matrix multiplication:

select (sum(z), i , j)
from (x, i ,k) in X, (y,k, j) in Y,

z = x∗y
group by i, j

select h(k, reduce(acc,z))
from x in X, y in Y, z = f(x,y)
where jx(x) = jy(y)
group by k: (gx(x), gy(y))

GroupByJoin (Valiant’s algorithm): distribute the data to workers in
the form of a grid n × n of partitions

each partition contains only those rows from X and those columns
from Y needed to compute a single partition of the resulting matrix
X and Y values are replicated n times
each worker uses (|X | ∗ |Y |)/n2 memory

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 25

Current work: distributed stream processing

Support for continuous queries over multiple streams of data

Data come in incremental batches ∆X

Batch streaming based on sliding windows

Query q(X1,X2;Y) over one invariant and two streaming data sources

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 26

Current work: distributed stream processing

select (k,avg(p.Y))
from p in stream(binary,"points")

group by k: p.X

Currently, works on Spark Streaming

Soon, on Flink Streaming

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 27

Next step: incremental query processing

Problem: translate any batch program (eg, PageRank) to an
incremental program automatically

Solution: Break the query q(X1,X2;Y) = g(f (X1,X2;Y)) such as:

f (X1]∆X1,X2]∆X2;Y) = f (X1,X2;Y) ⊗ f (∆X1,∆X2;Y)

Requires program analysis & transformation

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 28

Summary

Slides are available at the MRQL wiki page:
http://wiki.apache.org/mrql/

We are looking for new developers to work on open tasks:
add support for more distributed/streaming platforms

Storm

support more input formats, including key-value stores
implement incremental query processing
specify more data analysis algorithms
benchmarking

Are you developing a distributed processing platform in need for a
query language?

talk to us!

Leonidas Fegaras (UTA) Apache MRQL http://mrql.incubator.apache.org/ 29

http://wiki.apache.org/mrql/

