
BUILDING RESILIENT MICROSERVICES
with APACHE QPID PROTON

Richard Li 
Rafael Schloming
datawire.io

• MICROSERVICES
• DESIGNING MICROSERVICES
• DEMO
• WRAP UP

• Release any time
• You’re responsible for

reliability, availability,
scalability, security

• You’re also
responsible for
monitoring, billing,
user admin, …

Idiot proof deploy Homogenous tech stack

Minimize upgrade
frequency

Synchronized release

Easy for vendor to debug
ACID; 1 simultaneous

release

Ship as fast as possible Continuous delivery

Lots of functional
breadth

Design/build in parts

Reliability, availability,
security, scale

Resilient system design

Microservices.

Continuous delivery

Design/build in parts

Resilient system design

Componentization via Services

Organized around Business Capabilities

Products not Projects

Smart endpoints and dumb pipes

Decentralized Governance

Decentralized Data Management

Infrastructure Automation

Design for failure

Evolutionary Design

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

DESIGNING MICROSERVICES

Monolith

1. Send a tweet.

2. Get followers.
3. Publish tweet.

App server

Three App Servers

1. Send a tweet.

2. Get followers.

3. Publish tweet.

App server

App Servers + Asynchronous Queue

1. Send a tweet.

2. Queue tweet for sending.

3. Process new tweets.

4. Get followers.

5. Publish tweet.

Not a typical app server

App Servers + Asynchronous Queue

1. Send a tweet.

2. Queue tweet for sending.

3. Process new tweets.

4. Get followers.

5. Publish tweet.

Not a typical app server

Recommend followers

Fully Asynchronous

1. Send a tweet.

2. Queue tweet for sending.

3. Process Tweet

4. Publish tweet.

Publish changes to followers

Recommend new
people to follow

MESSAGING

HTTP

LB LB LB

Asynchronous Messaging

Q T

Asynchronous Message Broker

Broker

DEMO

Smart endpoints with Proton

Q T

“Barkers”

Outbox

Business Logic

Inbox

Clients

• Native AMQP 1.0 protocol
engine

• Core engine implemented in C
• Language bindings in Python,

JavaScript, Ruby, PHP, Perl,
Java, Go, C++

Practical Proton Details

• Part of Apache Qpid
• Used by a number of Qpid

projects, including the C++
brokers, JMS Client, Qpid
Dispatcher

• Also used by ActiveMQ,
HornetQ, Microsoft Azure,
IBM MQLite, and many
organizations

http://qpid.apache.org/proton

http://qpid.apache.org/proton

SUMMARY

• Microservices are a natural paradigm for cloud-
delivered software

• Microservices need to be loosely coupled
• Asynchronous messaging is the key to loose coupling
• Proton provides a simple, powerful async messaging

engine

THANK YOU!

richard@datawire.io
rhs@datawire.io

http://qpid.apache.org/proton

