Data Stream Algorithms
in Storm and R

Radek Maciaszek

¢ dataminelod
qald e answer

Who Am I?

o Radek Maciaszek

e Consulting at DataMine Lab (www.dataminelab.com) - Data mining,
business intelligence and data warehouse consultancy.

e Data scientist at a hedge fund in London
e MSc in Bioinformatics
e MScin Cognitive and Decisions Sciences
e BSc Computer Science

e During the career worked with many companies on Big Data and real
time processing projects; indcluding Orange, Unanimis, SkimLinks,
CognitiveMatch, OpenX, ad4game, eCourier and many others.

Agenda

. Why streaming data?

. Streaming algorithms crash course

. Storm

. Storm + R

. Use Cases

Data Explosion

. Exponential growth of information [IDC, 2012]

40,000
30,000
(Exabytes) 20,000

10,000

;
2009 2010 2011 2012 2013 2014 2015 2006 2007 2018 2019 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

Data, data everywhere [Economist]

I Overload [

Global information created and available storage
Exabytes

2,000
FORECAST

1,750
1,500
1,250
1,000
750

Information created

. 500
Available storage
250

!] | | | | o
2005 06 07 08 09 10 11

Source: IDC

“In 2013, the available storage capacity could hold 33% of all
data. By 2020, it will be able to store less than 15%” [IDC, 2014]

Data Streams — crash course

Reasons to use data streams processing
- Data doesn’t fit into available memory and/or disk
- Near real-time data processing

- Scalability, cloud processing

Examples

- Network traffic

- Web traffic (i.e. online advertising)
- Fraud detection

.
Use Case — Dynamic Sampling Qpenx

OpenX - open-source ad server

Millions of ad views per hour

Challenge
- Create ad samples for statistical analysis. E.g: A/B testing, ANOVA, etc.
- The data doesn’t fit into the memory.

Solution

Reservoir Sampling — allows to find a sample of a constant length from a
stream of unknown length of elements

Data Streaming algorithms

Sampling
- Use statistic of a sample to estimate the statistic of population. The
bigger the sample the better the estimate.

Reservoir Sampling — sample populations, without knowing it’s size.

Algorithm:
« Store first n elements into the reservoir.

 Insert each k-th from the input stream in a random spot of the reservoir
with a probability of n/k (decreasing probability)

now
| k k+

samples - [13[18[18]14][17]15[23]22]26]...

| |
| ?
P=n/k -

‘ P=n/(k+1) <a--

reservoir|14|24 |18 |17 |21 |19

n >

Source: Maldonado, et al; 2011

A

Use Case - Counting Unique Users

™

100m+ daily visits orange

Challenge - number of unique visitors - one of the most
important metrics in online advertising

Hadoop MapReduce. It worked but took long time and much
memory.

Solution:
HyperLoglLog algorithm
Highly effective algorithm to count distinct number of elements
See Redis HyperLoglLog data structure

Many other use cases:
Cardinality in DB queries optimisation
ISP estimates of traffic usage

Cardinality estimation

Idea: Convert high-dimensional data to a smaller dimensional
space. Use lower dimensional image to estimate the function of

interest.
Example: count number of words in all works of Shakespeare
Naive solution: keep a set where you add all new words

Probabilistic counting — 1983. Flajolet & Martin. (first streaming
algorithm)

A better one — LoglLog algorithm [Durand & Flajolet; 2003]

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

Probabilistic counting

Transform input data into i.i.d. (independent and identically distributed)
uniform random bits of information

Hash(x)= bit1 bit2 ...
Where P(bit1)=P(bit2)=1/2

Ixxx->P=1/2,n>=2 8 o
11xx->P=1/4,n>=4
111x->P=1/8,n>=8 | 8 1
n >= 2k*1 -

1 S
lk&xﬁ->P=2k§1 o |
Flajolet (1983) estimated the bias W

& W ! Ww' ‘H m
1 .

E [gzp] = Vl_l T T T T T T T T T T T T T T TT I I | |
Where ¢ =~ 0.7735 and unhashed hashed

p = position of a first “0” Source: http://git.io/veCtc

Probabilistic counting - algorithm

p — calculates position of first zero in the bitmap

fori:=0to L—1do BITMAP[{]:=0;
for all x in M do
begin
index = p(hash(x));
if BITMAP[index] =0 then BITMAP[index) :=1;
end;

1
Estimate the size using: Ezp

R proof-of-concept implementation: http://git.io/ve8la

Example: > stream = as.integer(runif(10000, @, 24n))
> probabilisticCounting(stream)
[1J]1111111111110000
> 1/0.7735 * 2413
[1] 10590.82

HyperLoglLog

LogLog — instead of keeping track of all 01s, keep track only of
the largest 0

This will take LogLog bits, but at the cost of lost precision

Example: 00000000 -> 1, 10100000 -> 4, 11100000 -> 4,
11110010->8

SuperlLoglLog — remove x% (typically 70%) of largest number
before estimating, more complex analysis

HyperLoglLog — harmonic mean of SuperLoglLog estimates
Fast, cheap and 98% correct

What if we want more sophisticated analytics?

Reference: Flajolet; Fusy et al. 2007

Moving average

Example, online mean of the moving average of time-series at
time llt”
. Xi-m | X

Xt,M = Xt—l,M - M‘ + M

Where: M — window size of the moving average.

Any any time “t” predict “t+1” by removing last “t-M” element,
and adding “t” element.

Requires last M elements to be stored in memory

There are many more: mean, variance, regression, percentile

R — Open Source Statistics

Open Source = low cost of adopting. Useful in prototyping.
Large global community - more than 2.5 million users
~5,000 open source free packages

Extensively used for modelling and visualisations

“Microsoft Courts Data Scientists with Revolution Analytics
Buy” (WSJ)

R Usage

80%
70% of data miners

70% . report using R
60%

50% /

40% :

30% 24% of data miners
/ oo™
10%

0%

Use Case — Real-time Machine Learning

Gaming ad-network
150m+ ad impressions per day
10 servers Storm cluster

Lambda architecture (fast and batch layers): used in parallel to
Hadoop, NoSQL

Challenge
Make real-time decision on which ad to display
Use sophisticated statistical environment to A/B test ads

Solution
Use Storm + R to do real-time statistics
Beta Distribution to compare two ads

Apache Storm

Real-time calculations — the Hadoop of real time
Fault tolerance

Easy to scale

Easy to develop - has local and distributed mode

Storm multi-lang can be used with any language, here with R

Getty Images

Apache Storm — Background

Open sourced in September 2011

Now part of Apache Storm

Implementation ~15k LOC

Written in Clojure / Java

Stream processing — processes messages and updates database
Continuous computation — query source, sends results to clients
DRPC —distributed RPC

Guaranteed message processing — no data loss

Transactional topologies

Storm Trident — easy to develop using abstract API

Storm Architecture

Nimbus
- Master - equivalent of Hadoop JobTracker
- Distributes workload across cluster
- Heartbeat, reallocation of workers when needed

Supervisor
« Runs the workers

Supernvisor

« Communicates with Nimbus
using ZK

Supervisor

Zookeeper @

« coordination,

nodes discovery ——

Source: Apache Storm

Supervisor

Supervisor

Supervisor

Storm Topology

* Graph of stream computations

* Basic primitives nodes
e Spout — source of streams (Twitter API, queue, logs)
* Bolt — consumes streams, does the work, produces

streams

_.

Spout

3

Image source: Storm github wiki

Can integrate with third party
languages and databases:

* Java

Python

Ruby

e Redis
e Hbase
e (Cassandra

Storm + R 5 STORM

. Storm Multi-Language protocol

. Multiple Storm-R multi-language packages
provide Storm/R plumbing

. Recommended package:
http://cran.r-project.org/web/packages/Storm

. Example R code

Use Case — Beta Distributions

- 50
Simple approach: TR = 2= 20 _
ple app CTR = = = = = 01666667

Wolphram Alpha: beta distribution (5, (30-5))

.....................

|
15 "
1 | ll _
| '1
LN 5
0 02 04 8 1.0
of ~n
3 'l' \'.
at [
4 I‘ |'l| —
N\ ’ Ex) = % o5 __
00 02 04 08 1.0 T a+pf 5+25 30

Source: Wolphram Alpha

Beta distributions prototyping — the R code

- Bootstrapping in R

> rboot <- function(l) {rbeta(l, 5, 30-5)}
> plot(sapply(1:500@, rboot))

0.5

0.4

0.3

0.1

0.0

0 1000 2000 3000 4000 5000

> rboot <- function(l) {rbeta(l, 5@, 300-50)}
plot(sapply(1:500@, rboot))

v

I I I I I [
0 1000 2000 3000 4000 5000

Storm and R

storm = Storm$Snew () ;
stormSlambda = function(s) {
t = sStuple;
tSoutput =

vector (mode="character", length=1) ;
clicks = as.numeric(t$Sinput[l]);
views = as.numeric (t$Sinput[2]);
tSoutput[l] = rbeta(l, clicks, views -
clicks) ;
sSemit (t) ;
falternative: mark the tuple as failed.
sSfail (t) ;
}

storm$Srun () ;

Storm and Java integration

Define Spout/Bolt in any programming language

Executed as subprocess — JSON over stdin/stdout

public static class RBolt extends ShellBolt
implements IRichBolt {
public RBolt () {
super ("Rscript", ”“script.R");

}

: {h/Q\o
e
No—0

Source: Apache Storm

Storm + R = flexibility

Integration with existing Storm ecosystem — NoSQL, Kafka
SOA framework - DRPC

Scaling up your existing R processes

Trident Q
/
["request-id", "result"]
Gﬁ < "result" —| DRPC
CHO-% Topolo
‘g —"args" —| Server PoogY
N
["request-id", "args", "return-info"]

—

Source: Apache Storm

Storm References

https://storm.apache.org Biq Ddt X

S

Storm Blueprints: Patterns
for Distributed Real-time
Computation

Storm Real-time
Processing Cookbook

L., Jommees.

Thank you

Data Stream will save you when:

Big Data problems
Do not want to flip the coins for the next 10 years
Make decisions in real-time

Questions and discussion

https://uk.linkedin.com/in/radekmaciaszek

http://www.dataminelab.com

