Introduction Generalities Brass Tacks Configuration/deployment example For Further Study
Deploying Python Applications with httpd

Jeff Trawick

http://emptyhammock. com/
trawick@emptyhammock.com

April 14, 2015

ApacheCon US 2015

@ python’

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Get these slides...

http://emptyhammock.com/projects/info/slides.html

http://emptyhammock.com/projects/info/slides.html

Revisions

Get a fresh copy of the slide deck before using any recipes. If | find

errors before this deck is marked as superseded on the web page,

I'll update the .pdf and note important changes here. (And please
e-mail me with any problems you see.)

Introduction

Who am |7

e My day jobs over the last 25 years have included work on
several products which were primarily based on or otherwise
included Apache HTTP Server as well as lower-level
networking products and web applications. My primary gig
now is with a Durham, North Carolina company which
specializes in Django application development.

e |'ve been an httpd committer since 2000. A general functional
area of Apache HTTP Server that | have helped maintain over
the years (along with many others) is the interface with
applications running in different processes, communicating
with the server using CGl, FastCGl, or SCGI protocols.

Generalities

mod_wsgi vs. mod_proxy-based solution

| won't cover mod_wsgi in this talk. | currently use it for a couple
of applications but am migrating away from it, primarily for these
reasons:
e mod_proxy supports more separation between web server and
application
e Supports moving applications around or running applications in
different modes for debugging without changing web server
e Supports drastic changes to the web front-end without
affecting application
e No collision between software stack in web server vs. software
stack in application (e.g., different OpenSSL versions)
e mod_proxy has a lot of shared code, configuration, and
concepts that are applicable to other application hosting.

e mod_wsgi occasionally doesn't have releases for an extended
period of time (e.g., required 2.4 users to collect patches for
quite a while)

Generalities

HTTP vs. FastCGIl vs. SCGI

Further choices arise once mod_proxy is selected, the first of which
is the wire protocol.
e Speed (with httpd)
e SCGlI faster than FastCGl
o FastCGl faster than HTTP

Speed (with nginx) SCGI, FastCGl, HTTP pretty close
(significantly lower requests/sec than httpd with FastCGI or
SCGI for the workloads | tried)

SCGl is by far the simplest protocol, and HTTP is by far the
most complex.

Encryption

e HTTP supports encryption between web server and
application, but the others do not.

Tool support (telnet-as-client, Wireshark, etc.)

Generalities

TCP sockets vs. Unix sockets

e With both httpd and nginx, for all protocols tested, Unix
sockets! are noticeably faster than TCP.

e The more complex Unix socket permissions can be a blessing
or a curse.

e TCP supports distribution among different hosts.

e TCP consumes kernel resources (and confuses many users of
netstat) while sockets remain in TIME_WAIT state.

e TCP's requirement for lingering close can require more server
(application container) resources.

1Unix socket support requires httpd 2.4.10 or later.

Generalities

Some cases with simple decision-making

If speed is of absolute concern, pick SCGI with Unix sockets.

If interoperability of your application stack for diagnostics or
any other purpose is of absolute concern, pick HTTP with
TCP sockets.

If encryption between the web server and application is of
absolute concern, pick HTTP.

If securing your application stack from other software in your
infrastructure is of absolute concern, and your application and
web server run on the same host, pick anything with Unix
sockets.

Generalities

For this talk

SCGI with TCP sockets between httpd and the application

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_scgi_module modules/mod_proxy_scgi.so

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Applicable differences between httpd 2.2 and 2.4

mod_proxy_scgi in 2.4

e requires proxy-scgi-pathinfo envvar to be set in order to
set PATH_INFO as required for many Python applications

e adds support for Unix sockets (2.4.10)

e any generic features added to mod_proxy in 2.4

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Differences between 2.4.something and 2.4.current

l.e., improvements after, say, Ubuntu 14.04

Ubuntu 14.04 has 2.4.7; current is 2.4.12 or 2.4.13
e Unix socket support added in 2.4.10
e CGIPassAuth to be added in 2.4.13 or later

e maybe a redirect trick talked about here will be added soon
too

See https://wiki.apache.org/httpd/Get24 for hints on which
distros bundle which levels of httpd.

https://wiki.apache.org/httpd/Get24

Brass Tacks

Minimal build of httpd 2.4 to support Python applications

./configure \

-—with-included-apr --enable-nonportable-atomics \
--enable-exception-hook \

--enable-mpms-shared=all --enable-mods-shared=few \

--enable-expires=shared --enable-negotiation=shared \
--enable-rewrite=shared --enable-socache-shmcb=shared \
-—enable-ssl=shared --enable-deflate=shared \
--enable-proxy=shared --enable-proxy-scgi=shared \
--disable-proxy-connect --disable-proxy-ftp \
--disable-proxy-http --disable-proxy-fcgi \

--disable-proxy-wstunnel --disable-proxy-ajp \
--disable-proxy-express \
--disable-lbmethod-bybusyness \
--disable-lbmethod-bytraffic \
--disable-lbmethod-heartbeat

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Building blocks on the application side

e Django or Flask for the programming framework
e uWSGI for the “container” that hosts/manages the
application processes

e an init script to start/stop the application by controlling
uWSGI, and a uWSGI configuration file

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Where is some of the sample code?

Later slides will show snippets from simple Flask and Django
applications (and their server configurations) in the Github
repository at https://github.com/trawick/httpd.py.

https://github.com/trawick/httpd.py

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Some code was harmed in the development of this
material!

e One topic in this presentation requires a mod_proxy_scgi patch
to respect the use of the X-Location response header to
control internal redirects from the application.

e This patch is in my httpd.py repository on Github.

e It needs to be generalized to support any custom header, not
just X-Location, before proposing for a future 2.4.x release.

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Simplest little bit of Django

from django.http import HttpResponse

PATH_VARS = ('PATH_INFO', 'PATH_TRANSLATED', 'SCRIPT_FILENAME',
'REQUEST_URI', 'SCRIPT_URI')

def cgivars(request):
return HttpResponse('
'.join(map(lambda x: '%s => %s' %
(x, request.environ.get(x, '<unset>')), PATH_VARS))
)

urlpatterns = [
url(r' cgivars/$', views.cgivars),

]

Listen 18083

<VirtualHost 127.0.0.1:18083>
Lots of stuff inherited from global scope
SetEnvIf Request_URI . proxy-scgi-pathinfo
ProxyPass /app/ scgi://127.0.0.1:3006/

</VirtualHost>

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Running the Django app via uWSGI

VENV=/home/trawick/envs/httpd.py
${VENV}/bin/uwsgi --scgi-socket 127.0.0.1:3006 \
--wsgi-file app.py \
--module app.wsgi \
--chdir /home/trawick/git/httpd.py/Django/app \
—--virtualenv ${VENV}

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Simplest little bit of Flask

from flask import Flask

app = Flask(__name__)
Qapp.route('/app/cgivars/')

PATH_VARS = ('PATH_INFO', 'PATH_TRANSLATED', 'SCRIPT_FILENAME',
'REQUEST_URI', 'SCRIPT_URI')

def cgivars():
return '
'.join(map(lambda x: '%s => %s' %
(x, request.environ.get(x, '<unset>')), PATH_VARS))

Listen 18082

<VirtualHost 127.0.0.1:18082>
Lots of stuff inherited from global scope
SetEnvIf Request_URI . proxy-scgi-pathinfo
ProxyPass / scgi://127.0.0.1:3005/
</VirtualHost>

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Running the Flask app via uWSGI

VENV=/home/trawick/envs/httpd.py
${VENV}/bin/uwsgi --scgi-socket 127.0.0.1:3005 \
--wsgi-file app.py \
--callable app \
--chdir /home/trawick/git/httpd.py/Flask \
—--virtualenv ${VENV}

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Django: X-Sendfile to offload file serving to the web server

from django.http import HttpResponse

def sendfile(request):
filename = request.environ['DOCUMENT_ROOT'] + '/' + 'bigfile.html'
response = HttpResponse()
response['X-Sendfile'] = filename
return response

urlpatterns = [
url(r'“sendfile/$', views.sendfile),

]

add to .conf for httpd:
ProxySCGISendfile On

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Flask: X-Sendfile to offload file serving to the web server

from flask import Flask, request, send_file

app = Flask(__name__)
app.use_x_sendfile = True

Qapp.route('/app/sendfile/"')
def sendfile():
filename = request.environ['DOCUMENT_ROOT'] + '/' + 'bigfile.html'
This sets content-length to O so httpd sends O bytes from
the file.

#
#
#
rsp = Response()

rsp.headers['X-Sendfile'] = filename

return rsp

This sets content-length from the actual file (and X-Sendfile).
It requires <app>.use_x_sendfile = True

return send_file(filename)

add to .conf for httpd:
ProxySCGISendfile On

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Django: X-Location to offload request after application
authorizes it

def protected(request):
filename = '/static/protected/index.html’
response = HttpResponse()
Django will turn this
into Location: http://127.0.0.1:18083/static/protected/foo
response['Location'] = filename
This is passed through unadulterated:
response['X-Location'] = filename
return response

add to .conf for httpd:
ProxyPass /static/protected/ !

Only allow access to /static/protected/ if a request to /app/protected/
redirected there. (I.e., must have been redirected, must have hit
the app first)
<Location /static/protected/>

Require expr %{reqenv:REDIRECT_REQUEST_URI} =" m#"/app/protected/#
</Location>

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Flask: X-Location to offload request after application
authorizes it

Qapp.route('/app/protected/"')

def protected():
filename = '/static/protected/index.html’
rsp = Response()

Flask/Werkzeug will turn this

into Location: http://127.0.0.1:18082/static/protected/foo
rsp.headers['Location'] = '/protected/' + filename

This is passed through unadulterated:
rsp.headers['X-Location'] = filename

return rsp

add to .conf for httpd:
ProxyPass /static/protected/ !

Only allow access to /static/protected/ if a request to /app/protected/
redirected there. (I.e., must have been redirected, must have hit
the app first)
<Location /static/protected/>

Require expr %{reqenv:REDIRECT_REQUEST_URI} =" m#"/app/protected/#
</Location>

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Handling /static/ for real Django apps

With the proper preparation, ./manage.py collectstatic will collect static files
into a location that the web server knows about and can serve.

Alias /static/ {{ static_dir }}/
ProxyPass /static/ !

<Directory {{ static_dir }}/>
Require all granted
only compress static+public files (see BREACH)
SetOutputFilter DEFLATE
if they aren't naturally compressed
SetEnvIfNoCase Request_URI \.(?7:gif|jpe?glpng)$ no-gzip
ExpiresActive On
ExpiresDefault "access plus 3 days"
Header set Cache-Control public
</Directory>

Consider something similar for /media/.

Introduction Generalities Brass Tacks Configuration /deployment example

robots.txt in /static/ too?

Alias /robots.txt {{ static_dir }}/robots.txt

ProxyPass /robots.txt !

Consider something similar for /favicon.ico.

For Further Study

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

|/O timeouts

e By default, the /0 timeout is the value of the Timeout
directive (i.e., same as client /O timeout).

e ProxyTimeout overrides that for proxy connections.

Introduction Generalities Brass Tacks Configuration /deployment example For Further Study

Add load balancing

This is a fairly typical use of the load balancer; other talks at ApacheCon cover the load
balancer capabilities more extensively.

LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so

ProxyPass /app/ balancer://app-pool/

<Proxy balancer://app-pool/>
BalancerMember scgi://127.0.0.1:10080
BalancerMember scgi://127.0.0.1:10081
The server below is on hot standby
BalancerMember scgi://127.0.0.1:10082 status=+H
ProxySet lbmethod=byrequests

</Proxy>

Brass Tacks

Handling Basic auth in the application

e Interactive applications normally use form-+cookie-based auth.

e Basic auth handled by the application might be important for
migration or other purposes.

e Normally httpd hides Authorization and
Proxy-Authorization request headers from applications,
but there are recipes on the web for subverting that, and
mod_wsgi provides the WSGIPassAuthorization directive to
enable that for applications it hosts.

e httpd 2.4.13 is expected to provide the CGIPassAuth
directive to enable this for all CGl-like interfaces to
applications, whether mod_fcgid, mod_wsgi, mod_cgi,
mod_proxy extensions, or others.

<Location /legacy-reports/>
CGIPassAuth On
</Location>

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

Ansible-based configuration and deployment

We want something that deploys with a simple interface and handles many if not all aspects of system
and application configuration.

$./deploy.sh staging

PLAY [Configure and deploy the application code]

GATHERING FACTS *x*x
ok: [172.16.84.128]

TASK: [Install packages]
ok: [172.16.84.128] => (item=python-virtualenv,postgresql,libpg-dev,python-dev,python-psycopg2)

TASK: [Install git]
ok: [172.16.84.128]

TASK: [Install git]
skipping: [172.16.84.128]

TASK: [Install system httpd]
ok: [172.16.84.128] => (item=apache2)

TASK: [Setup up Postgresql user]
ok: [172.16.84.128]

TASK: [Setup up Postgresql DB]
ok: [172.16.84.128]

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

Ansible-based configuration and deployment

TASK: [Add the logging group]
ok: [172.16.84.128]

TASK: [Add managing user to logging group]
ok: [172.16.84.128]

TASK: [Add daemon user to logging group]
ok: [172.16.84.128]

TASK: [Create log directory]
ok: [172.16.84.128]

TASK: [Create archive directory]
ok: [172.16.84.128]

TASK: [git repo=ssh://git@github.com/trawick/{{ project_name }}.git dest={{ remote_checkout }} ver
changed: [172.16.84.128]

TASK: [template src={{ base_cfg_dir }}/settings.cfg.j2 dest={{ django_src }}/settings.cfgl **x
ok: [172.16.84.128]

TASK: [file dest={{ scratch_dir }} mode=755 owner={{ remote_user }} group={{ remote_user }} state=
1 *xkk

ok: [172.16.84.128]

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

Ansible-based configuration and deployment

TASK: [file dest={{ remote_checkout }}/envs mode=755 owner={{ remote_user }} group={{ remote_user
1 *xkx
ok: [172.16.84.128]

TASK: [Create new virtualenv]
skipping: [172.16.84.128]

TASK: [file dest={{ static_dir }} mode=755 owner={{ remote_user }} group={{ remote_user }} state=d
] kkk

ok: [172.16.84.128]

TASK: [pip virtualenv={{ virtualenv_dir }} requirements={{ remote_checkout }}/src/requirements.txt
ok: [172.16.84.128]

TASK: [django_manage app_path={{ django_src }} command=migrate virtualenv={{ virtualenv_dir }}
1 Hxk
ok: [172.16.84.128]

TASK: [django_manage app_path={{ django_src }} command=collectstatic virtualenv={{ virtualenv_dir
1 #xk
ok: [172.16.84.128]

TASK: [Create test datal
changed: [172.16.84.128]

TASK: [Define nightly_archive cron job]
skipping: [172.16.84.128]

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

Ansible-based configuration and deployment

TASK: [Configure system httpd to include mod_proxyl
ok: [172.16.84.128]

TASK: [Configure system httpd to include mod_proxy_scgil
ok: [172.16.84.128]

TASK: [Configure system httpd to include mod_headers]
ok: [172.16.84.128]

TASK: [Configure system httpd to include mod_deflate]
ok: [172.16.84.128]

TASK: [Configure system httpd to include mod_expires]
ok: [172.16.84.128]

TASK: [Configure system httpd]
ok: [172.16.84.128]

TASK: [Restart system httpd]
changed: [172.16.84.128]

TASK: [Add application uWSGI config]
ok: [172.16.84.128]

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

Ansible-based configuration and deployment

TASK: [Add application init script]
ok: [172.16.84.128]

TASK: [Configure run-levels for application]
changed: [172.16.84.128]

TASK: [Restart application]
ok: [172.16.84.128]

PLAY RECAP
172.16.84.128 : ok=31 changed=4 unreachable=0 failed=0

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.sh

$ cat deploy.sh
#!/bin/sh

usage="Usage: $0 {prod|staging}"
if test $# -ne 1; then
echo $usage 1>&2

exit 1
fi
if test $1 != "prod"; then
if test $1 != "staging"; then
echo $usage 1>&2
exit 1
fi
fi

~/envs/ansible/bin/activate
exec ansible-playbook -i $HOME/server-config/$1/walking/ansible-settings deploy.yml

Introduction

Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.yml - System

- name: Configure and deploy the application code
hosts: webservers
remote_user: "{{ remote_user }}"
tasks:

- name: Install packages
apt: name={{ item }} state=latest
sudo: yes
with_items:
- python-virtualenv
- postgresql
- libpg-dev
- python-dev

The system python-psycopg2 package is used by Ansible;

- python-psycopg2

- name: Install git
apt: name=git state=latest
sudo: yes

- name: Install system httpd
apt: name={{ item }} state=latest
sudo: yes
with_items:
- apache2

packages

the Django app uses psycopg2 from its vir

Introduction Generalities Brass Tacks

Configuration/deployment example For Further Study

deploy.yml - Database

- name: Setup up Postgresql user
sudo: yes

sudo_user: postgres

postgresql_user: name={{ pg_user }} password={{ pg_password }} \
role_attr_flags=CREATEDB, NOSUPERUSER

- name: Setup up Postgresql DB
sudo: yes

sudo_user: postgres
postgresql_db: name={{ project_db }}
encoding="'UTF-8'

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.yml - Updating application from git

- git: repo=ssh://git@github.com/trawick/{{ project_name }}.git
dest={{ remote_checkout }}
version=HEAD
update=yes
force=no
key_file=/home/{{ remote_user }}/.ssh/{{ git_deploy_key }}

Introduction

- file:

— name:

Generalities Brass Tacks Configuration/deployment example

deploy.yml - virtualenv

>
dest={{ remote_checkout }}/envs
mode=755
owner={{ remote_user }}
group={{ remote_user }}
state=directory

Create new virtualenv

command: "{{ virtualenv_binary }} -p {{ python_binary }} \
--no-site-packages {{ virtualenv_dir }} creates={{ virtualenv_dir }}"

- file:

- pip:

>
dest={{ static_dir }}
mode=755
owner={{ remote_user }}
group={{ remote_user }}
state=directory

virtualenv={{ virtualenv_dir }}
requirements={{ remote_checkout }}/src/requirements.txt

For Further Study

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.yml - Django setup

- django_manage: >
app_path={{ django_src }}
command=migrate
virtualenv={{ virtualenv_dir }}

- django_manage: >
app_path={{ django_src }}
command=collectstatic
virtualenv={{ virtualenv_dir }}

Introduction

Generalities

deploy.yml - httpd configuration

name: Configure
apache2_module:
sudo: yes
name: Configure
apache2_module:
sudo: yes
name: Configure
apache2_module:
sudo: yes
name: Configure
apache2_module:
sudo: yes
name: Configure
apache2_module:
sudo: yes
name: Configure

Brass Tacks Configuration/deployment example

system httpd to include mod_proxy
state=present name=proxy

system httpd to include mod_proxy_scgi
state=present name=proxy_scgi

system httpd to include mod_headers
state=present name=headers

system httpd to include mod_deflate
state=present name=deflate

system httpd to include mod_expires
state=present name=expires

system httpd

For Further Study

template: src={{ base_cfg_dir }}/ubuntu-apache24/{{ project_name }}-vhost.conf \
dest=/etc/apache2/sites-enabled/

sudo: yes

name: Restart system httpd
command: /etc/init.d/apache2 reload

sudo: yes

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.yml - uWSGI configuration

- name: Add application uWSGI config
template: src=uwsgi-ini.j2 dest={{ log_dir }}/{{ project_name }}.ini

- name: Add application init script
template: src=init-script.j2 dest=/etc/init.d/{{ project_name }}-app mode=0751
sudo: yes

- name: Configure run-levels for application
command: update-rc.d {{ project_name }}-app defaults
sudo: yes

- name: Restart application
action: service name={{ project_name }}-app state=started
sudo: yes

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.yml - .conf template

<VirtualHost *:80>

ServerName {{ canonical_server_name }}

Redirect permanent / https://{{ canonical_server_name }}/
</VirtualHost>

<VirtualHost *:443>
ServerName {{ canonical_server_name }}

CustomLog {{ log_dir }}/httpd-access.log common
ErrorLog {{ log_dir }}/httpd-error.log
LogLevel {{ httpd_log_level }}

DocumentRoot unused; point it to something users can access anyway
DocumentRoot {{ static_dir }}/

<Directory />
Options FollowSymLinks
Require all denied
AllowOverride None
</Directory>

Alias /robots.txt {{ static_dir }}/robots.txt
Alias /static/ {{ static_dir }}/
Alias /media/ XXXXX

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.yml - .conf template

plain "SetEnv" sets this too late
SetEnvIf Request_URI . proxy-scgi-pathinfo

ProxyPass /robots.txt !

ProxyPass /static/ !

ProxyPass /media/ !

ProxyPass / scgi://127.0.0.1:{{ application_port }}/

<Location /admin/>
<IfModule ssl_module>
Require ssl
</IfModule>
</Location>

<Directory {{ static_dir }}>
Require all granted
only compress static+public files (see BREACH)
SetOutputFilter DEFLATE
if they aren't naturally compressed
SetEnvIfNoCase Request_URI \.(?:gif|jpe?glpng)$ no-gzip
ExpiresActive On
ExpiresDefault "access plus 3 days"
Header set Cache-Control public
</Directory>

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.yml - .conf template

SSLEngine on
SSL protocols/ciphers/etc. inherited from global scope

Header always set Strict-Transport-Security "max-age=31536000"

SSLCertificateKeyFile /home/trawick/server_keys/arewewalkingtomorrow.com/arewewalkingtomorro
SSLCertificateFile /home/trawick/server_keys/arewewalkingtomorrow.com/arewewalkingtomorro

SSLCertificateChainFile /home/trawick/server_keys/arewewalkingtomorrow.com/all.pem
</VirtualHost>

Introduction Generalities Brass Tacks Configuration/deployment example

deploy.yml - uWSGI template

[uwsgil

pidfile = {{ log_dir }}/{{ project_name }}.pid
daemonize = {{ log_dir }}/{{ project_name }}.log
scgi-socket = 127.0.0.1:{{ application_port }}
chdir = {{ django_src }}

module = {{ project_name }}.wsgi

master = true

processes = 1

threads = 2

uid = {{ remote_user }}

gid = {{ remote_user }}

virtualenv = {{ virtualenv_dir }}

For Further Study

Introduction Generalities Brass Tacks Configuration/deployment example For Further Study

deploy.yml - init script
!/bin/sh

SERVICE_NAME={{ project_name }}-app
PIDFILE={{ log_dir }}/{{ project_name }}.pid
UWSGI_INI={{ log_dir }}/{{ project_name }}.ini
UWSGI_ENV={{ virtualenv_dir }}

. ${UWSGI_ENV}/bin/activate

start_service() {
if test -f "$PIDFILE"; then

echo " * $SERVICE_NAME pid file already exists..."

PID="cat $PIDFILE"

if kill -0 $PID 2>/dev/null; then
echo " * $SERVICE_NAME is already running"
exit 1

fi

(and on and on)

Here's a complete example: https://github.com/trawick/
edurepo/blob/master/src/ansible/init-script.j2

https://github.com/trawick/edurepo/blob/master/src/ansible/init-script.j2
https://github.com/trawick/edurepo/blob/master/src/ansible/init-script.j2

Introduction Generalities Brass Tacks Configuration/deployment example

deploy.yml - Template variables

a.k.a. Ansible hosts file

[webservers]

This is the IP address or hostname of the server machine.
arewewalkingtomorrow.com target_address=arewewalkingtomorrow.com \
canonical_server_name=arewewalkingtomorrow.com \
canonical_base_url=http://arewewalkingtomorrow.com/

[webservers:vars]
base_cfg_dir=/home/trawick/server-config/prod/walking
application_port=3001

project_name=walking

remote_user=walker

remote_checkout=/home/{{ remote_user }}/git/{{ project_name }}
static_dir=/home/{{ remote_user }}/{{ project_name }}-static
httpd_log_level=warn

log_dir=/var/log/django-{{ project_name }}

project_db={{ project_name }}

pg_user={{ project_name }}

virtualenv_dir={{ remote_checkout }}/envs/{{ project_name }}
django_src={{ remote_checkout }}/src/{{ project_name }}

For Further Study

For Further Study

“pyweb”

http://emptyhammock.com/projects/info/pyweb/index.html

e Web Server Configuration for Python Apps, my
work-forever-in-progress to describe similar httpd and nginx
mechanisms for deploying Python applications

e Includes some performance comparisons, many more connectivity
variations, etc.

http://emptyhammock.com/projects/info/pyweb/index.html

For Further Study

Caktus Group project template

Relatively complete application and infrastructure
configuration

Much more complex than the Ansible example, but handles
many more requirements

https://github.com/caktus/django-project-template
Salt instead of Ansible
nginx instead of httpd

https://github.com/caktus/django-project-template

For Further Study

General httpd features which can be useful

e Web server cache (mod_cache, mod_disk_cache)
o Web server logging tricks
e Configure httpd and application log formats to include
UNIQUE_ID
e Add response time (and time to first byte??) in httpd access
log
e See
http://people.apache.org/~trawick/AC2014-Debug. pdf
for different tricks applicable to diagnosing application
symptoms.

e Load balancing and mod_proxy balancer manager

e Monitoring capacity utilization for httpd and application

2LogI0TrackTTFB was just added to trunk; maybe it will be backported to
2.4.x soon.

http://people.apache.org/~trawick/AC2014-Debug.pdf

Thank you!

<O <Fr o«

Q>

	Introduction
	Generalities
	Brass Tacks
	Configuration/deployment example
	For Further Study

