
From MapReduce to
Spark with Apache

Crunch
Micah Whitacre

@mkwhit

Invested in learning

Invested in learning

Setup production clusters

Invested in learning

Setup production clusters

Tuned everything

Current Strategy

1. Build MR Jobs as needed
2. ????
3. Profit

We should switch to

Umm what would it
take to switch?

Learn Spark’s API
and processing
patterns, ...

Refactor all our code, ...

Experiment with
how to tune it all
again, ...

We don’t use plain
MR it won’t be that
bad...

● Crunch (http://crunch.apache.org/user-
guide.html#sparkpipeline)

● Cascading/Scalding (https://github.
com/tresata/spark-scalding)

● Summingbird (will https://github.
com/twitter/summingbird/issues/387)

http://crunch.apache.org/user-guide.html#sparkpipeline
http://crunch.apache.org/user-guide.html#sparkpipeline
http://crunch.apache.org/user-guide.html#sparkpipeline
https://github.com/tresata/spark-scalding
https://github.com/tresata/spark-scalding
https://github.com/tresata/spark-scalding
https://github.com/twitter/summingbird/issues/387
https://github.com/twitter/summingbird/issues/387
https://github.com/twitter/summingbird/issues/387

How Spark is Known..

In Memory

How Spark is Known..

In Memory

100x Faster than MapReduce

SQL, streaming, and complex analytics

How Spark is Known..

A fast and general
engine for large-scale

data processing.

Spark has an advanced
Directed Acyclic Graph
execution engine that

supports cyclic data flow
and in-memory computing.

Spark has an advanced
Directed Acyclic Graph
execution engine that

supports cyclic data flow
and in-memory computing.

RDD

RDD

Resilient Distributed Dataset

Locality Aware Scheduling

Locality Aware Scheduling

Scalability

Fault Tolerant

Locality Aware Scheduling

Scalability

Fault Tolerant

Locality Aware Scheduling

Scalability

Applications with working sets
(Parallel ops on intermediate results)

Fault Tolerant

Locality Aware Scheduling

Scalability

Applications with working sets
(Parallel ops on intermediate results)

Log Updates

Options?

Distributed
Shared Memory
+ Checkpointing

Log Updates

Options?

Distributed
Shared Memory
+ Checkpointing

Log
(coarse-grained)

Updates

Immutable/Read Only

Partitioned

Bad for async updates to
shared state

RDDs lifecycle in memory
tied to Spark Application

Transformations

Actions

Transformations

Actions

map, filter, flatmap, union,
groupByKey, sample

reduce, collect, count, take

Transformations

Actions

lazily executed

return values to driver

val sc = new SparkContext(new SparkConf())
val charCounts = sc.textFile(args(0))
 .flatMap(_.split(" "))
 .flatMap(_.toCharArray).map((_, 1))
charCounts.collect()
// (‘a’, 1)(‘a’, 1)(‘b’, 1)(‘c’, 1)(‘e’, 1)

Apache Crunch
Review

Process
Reference

Data

Process
Raw

Person
Data

Process
Raw Data

using
Reference

Filter Out
Invalid
Data

Group
Data By
Person

Create
Person
Record

Avro

CSV

CSV

Process
Reference

Data

Process
Raw

Person
Data

Process
Raw Data

using
Reference

Filter Out
Invalid
Data

Group
Data By
Person

Create
Person
Record

Avro

CSV

CSV

Pipeline

Pipeline p = ...

Process
Reference

Data

Process
Raw

Person
Data

Process
Raw Data

using
Reference

Filter Out
Invalid
Data

Group
Data By
Person

Create
Person
Record

Pipeline

Target
s

Sources

PCollection<String> values =
 p.read(source);
...
values.write(target);

Process
Reference

Data

Process
Raw

Person
Data

Process
Raw Data

using
Reference

Filter Out
Invalid
Data

Group
Data By
Person

Create
Person
Record

Avro

CSV

CSV

PipelinePCollection

PCollection<String> values = …
PTable<String, Integer> counts =
 values.parallelDo(fn,ptype);

DoFn

DoFn

Join FilterFn Group By
Key MapFn

Pipeline

DoFn

DoFn

Join FilterFn Group By
Key MapFn

MRPipeline

Pipeline p =
 new MRPipeline(
 Driver.class, hadoopConfig);

PCollection<String> values =
 p.read(...);
<do processing>
p.write(...);
p.done();

DoFn

DoFn

Join FilterFn Group By
Key MapFn

MRPipeline

Map Reduce Reduce

Here’s what we need to
do to switch...

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.10</artifactId>
 <version>${sparkVersion}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.crunch</groupId>
 <artifactId>crunch-spark</artifactId>
 <version>${crunchVersion}</version>
 <scope>compile</scope>
</dependency>

Pipeline p =
 new MRPipeline(
 Driver.class, hadoopConfig);

Pipeline p =
 new SparkPipeline(
 “spark://localhost:7077”,
 “Spark App Name”);

hadoop jar myjar.jar
 com.example.Driver ...

spark-submit

 --class com.example.Driver

 --master spark://localhost:7077

 ...

DoFn

DoFn

Join FilterFn Group By
Key MapFn

SparkPipeline

Job 1Stage 1

Stage 2 Stage 3

That’s not too bad...

Well there are
some differences
to account for...

Crunch with MRPipeline minimizes I/O

Crunch with SparkPipeline defers
planning to Spark

MRPipeline SparkPipeline

MRPipeline SparkPipeline

Supports multiple writes

MRPipeline SparkPipeline

Supports multiple writes

Performs
multiple writes in
same task/stage

MRPipeline SparkPipeline

Supports multiple writes

Performs
multiple writes in
same task/stage

Serial writes in
separate

task/stages

DoFn

DoFn

FilterFn Group By
Key MapFn

Map Reduce

DoFn

DoFn

FilterFn Group By
Key MapFn

Job 1

Job 2

SparkPipeline

DoFn

DoFn

FilterFn Group By
Key MapFn

Map Reduce

DoFn

DoFn

FilterFn Group By
Key MapFn

Stage 1

Job 2

Job 3

SparkPipeline

DoFn
Compute

Expensive
DoFn

DoFn

FilterFn

Spark is lazy

Action needed for
something to happen

DoFn
Compute

Expensive
DoFn

DoFn

FilterFn

Job 1

DoFn
Compute

Expensive
DoFn

DoFn

FilterFn

Job 2

DoFn
Compute

Expensive
DoFn

DoFn

FilterFn

Limit expensive computations

Keep RDDs around for reuse

Spark supports persisting
RDDs in memory

rdd.persist()

DISK_ONLY, DISK_ONLY_2,
MEMORY_AND_DISK, MEMORY_AND_DISK_2,

MEMORY_AND_DISK_SER,
MEMORY_AND_DISK_SER_2, MEMORY_ONLY,

MEMORY_ONLY_2, MEMORY_ONLY_SER,
MEMORY_ONLY_SER_2, NONE, OFF_HEAP

rdd.persist(
 StorageLevel.MEMORY_ONLY)

DoFn
Compute

Expensive
DoFn

DoFn

FilterFn

Job 2

Job 1

PCollection<String> values =
 //expensive computation
values.cache();

PCollection<String> values =
 //expensive computation
CacheOptions opts = new
 CacheOptions.Builder()
 .useDisk(true).useMemory(true)
 .build();
values.cache(opts);

Spark needs to be able to
serialize data

Send data
between workers

Persist data in
memory or disk

Spark supported serialization

Java Serializable
(and Externalizable)

Kyro
Serialization

Spark recommends Kryo

Extra config on the
SparkConfig

Custom
serializer

registration

Spark on Crunch

Hides serialization behind PTypes

Handles complex records like Avro

Spark on Crunch

Hides serialization behind PTypes

Handles complex records like Avro

Additional Topics to Explore

Aggregation sort behaviors

Reusing Crunch Functions in Spark

With Crunch, we’ll be
able to ...

minimize significant
code refactoring,

shorten learning curve
by reusing concepts and
API already used to...

incrementally switch
from Spark,

overall experiment to
find where Spark fits
best.

Links:

● http://crunch.apache.org/
● http://spark.apache.org/docs/latest/
● Examples: https://github.

com/mkwhitacre/simplesparkapp

http://crunch.apache.org/
http://crunch.apache.org/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
https://github.com/mkwhitacre/simplesparkapp
https://github.com/mkwhitacre/simplesparkapp
https://github.com/mkwhitacre/simplesparkapp

Special Thanks...

● Josh Wills - helped come up with content
● Sean Owen & Sandy Ryza whose repo I

forked to build examples and experiment

