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Objectives 

• Use existing HPC Cluster for running Hadoop Applications 

• Use any of the HPC File Systems like Lustre, PVFS, IBRIX 

Fusion, etc. 

• Use any of the HPC schedulers like Slurm, Moab, PBS Pro, 

etc. 

• Combine Hadoop workloads with HPC workloads 

• No code changes to existing Hadoop(HDFS/YARN/MR) 

applications 

• Minimal Hadoop configuration changes 
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HDFS Applications Using HPC File Systems 
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public class <HPC>Adapter 

extends AbstractFileSystem{ 

………….. 

………….. 

 

 

} 

HDFS 

Application 

HPC FS 
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<property> 

  <name>fs.AbstractFileSystem.${hpc-uri}.impl</name> 

  <value>HPCFileSystemAdapter</value> 

</property> 

<property> 

  <name>fs.defaultFS</name> 

  <value>${hpc-uri}:///</value> 

</property> 

 

 

Hadoop Configurations for File System 



YARN Application 
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YARN Application with HPC Scheduler 
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Yarn Application Submission with HPC Scheduler 
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Mapreduce Job with HPC Scheduler 
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Yarn Protocols Configurations 
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 <property> 

    <description>RPC class implementation</description> 

    <name>yarn.ipc.rpc.class</name> 

    <value>HadoopYarnHPCRPC</value> 

  </property> 

RPC class Configuration 



Yarn Protocols Configurations 
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public class HadoopYarnHPCRPC extends HadoopYarnProtoRPC { 

  @Override  

    public Object getProxy(Class protocol, InetSocketAddress address, Configuration conf) { 

    Object proxy; 

    if (protocol == ApplicationClientProtocol.class) { 

      proxy = new HPCApplicationClientProtocolImpl(conf); 

    } else if (protocol == ApplicationMasterProtocol.class) { 

      proxy = new HPCApplicationMasterProtocolImpl(conf); 

    } else if (protocol == ContainerManagementProtocol.class) { 

      proxy = new HPCContainerManagementProtocolImpl(conf); 

     } else { 

      proxy = super.getProxy(protocol, address, conf); 

    } 

    return proxy; 

  } 



Application Client Protocol 
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Application Client Protocol 
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Yarn Application Client HPC Scheduler Flow 

HPC 

Scheduler 

Yarn Application Client 

 

 

 

 

 

 

 

 

RMClient 

HPCApplicati

onClientProt

ocolImpl 

1. Allocate Resources cmd 

2. Submit Job(Batch) cmd 

3. Cancel Job cmd 

4. Cluster Info cmd 

5. Get Jobs Report cmd  

……….. 



Application Client Protocol 
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API’s for interaction 

1. getNewApplication() 

  The interface used by clients to obtain a new ApplicationId for submitting new 

applications. 

2. submitApplication() 

   The interface used by clients to submit a new application to the ResourceManager. 

3. forceKillApplication() 

  The interface used by clients to request the ResourceManager to abort submitted 

application. 

4. getClusterMetrics() 

5. getClusterNodes() 

6. getQueueInfo() 



Application Master Protocol 
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Application Master Protocol 
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HPC Scheduler Application Master Flow Diagram 
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Application Master Protocol 
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API’s for interaction 

1. registerApplicationMaster() 

  The interface used by a new ApplicationMaster to register with the ResourceManager. 

 

2. allocate() 

 The main interface between an ApplicationMaster and the ResourceManager. 

 

3. finishApplicationMaster() 

 The interface used by an ApplicationMaster to notify the ResourceManager about its 

completion (success or failed). 



Container Management Protocol 
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Container Management Protocol 
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Container Management Protocol 
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API’s for interaction 

1. startContainers() 

 The ApplicationMaster provides a list of StartContainerRequest's to a NodeManager 

to start Container's allocated to it using this interface. 

 

2. stopContainers() 

 The ApplicationMaster requests a NodeManager to stop a list of Container's allocated 

to it using this interface. 

 

3. getContainerStatuses() 

 The API used by the ApplicationMaster to request for current statuses of Container's 

from the NodeManager. 
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 <property> 

    <name>yarn.log-aggregation-enable</name> 

    <value>true</value> 

  </property> 

Yarn Log Aggregation 

Log Aggregation by Node Manager 

Log Aggregation with HPC Scheduler 

 
• Issue an HPC scheduler command to execute in all nodes(where 

application tasks executed) as part of 

ApplicationMasterProtocol.finishApplicationMaster() for 

aggregating the application logs. 
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Shuffle Handling – Hadoop 
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Shuffle Handling – HPC File Systems 
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Shuffle Handling 
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<property> 

  <name>mapreduce.job.map.output.collector.class</name> 

<value>org.apache.hadoop.mapred.MapTask$MapOutputBuffer</value> 

  <description> 

    The MapOutputCollector implementation(s) to use. This may be a 

comma-separated list of class names, in which case the map task will try 

to initialize each of the collectors in turn. The first to successfully 

initialize will be used. 

  </description> 

</property> 

 

Shuffle Handler 
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<property> 

   <name>mapreduce.job.reduce.shuffle.consumer.plugin.class</name> 

   <value>org.apache.hadoop.mapreduce.task.reduce.Shuffle</value> 

   <description>  

     Name of the class whose instance will be used to send shuffle 

requests by reduce tasks of this job. The class must be an instance of 

org.apache.hadoop.mapred.ShuffleConsumerPlugin. 

  </description> 

</property> 

 

Shuffle Handling 
 
Shuffle Consumer 

 



Summary 

 HDFS configuration for new File System 

 HPC Schedulers 

 YARN Protocols 

 M/R Shuffle Implementation 

 Yarn Log Aggregation 
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Q & A 
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Thank You… 

 

devaraj@apache.org 
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