
  

Mobile development with
Apache OFBiz

Ean Schuessler, co-founder @ Brainfood



  

Mobile development

● For the purposes of this talk “mobile 
development” means “mobile web 
development”

● The languages and APIs for native iOS, Android 
and Windows phones are different but the 
concepts translate directly

● This talk will cover deployment as an app using 
PhoneGap (Apache Cordova)



  

Mobile web development

● Pages are largely static assets 
● Adaptive HTML/CSS with flexible screen sizes
● Templating and client logic are implemented on 

the client using Javascript instead of on the server
● User data is provided via AJAX calls that return 

JSON, XML or some other common format
● May utilize a web app framework like PhoneGap 

to access additional hardware features



  

Benefits

● User interaction is more sophisticated and can provide 
functionality that would be impossible using server side 
template rendering (ie. Google Maps, etc)

● Multi-platform mobile app and mobile web from one source 
base

● Application can be more responsive and handle errors more 
naturally

● Better separation of business logic and presentation layer
● Improved server scalability and caching options
● Improved XSS security



  

Technologies

● There are many application frameworks with 
similar capabilities. Dojo, jQuery/jQueryUI, 
Stapes, Emberjs, BackboneJS, Angular, Rivets 
and so on

● There are also many HTML/CSS frameworks 
with two dominant examples being Bootstrap 
and Zurb Foundation

● How do you choose?



  

Todo MVC

Implementations of 
the same simple to-
do list application 
using many different 
frameworks

Full source is 
provided for each 
implementation for 
comparison



  

This talk

● For this talk we will focus on one common stack: 
RequireJS + BackboneJS + RivetsJS

● We will also discuss the common build automation 
tools Bower and Grunt

● PhoneGap to package as an app for app stores
● Integrate with OFBiz using a simple servlet for REST 

calls
● Demonstrate execution of shared Javascript code for 

client and server model validation



  

Benefits: Interface flexibility

Example: D3 Javascript library for graphing 
provides dynamic, interactive data modeling that 
could not be achieved using page fetches. 
(Show examples)



  

Benefits: Single source base

● If an application is designed carefully then the 
same HTML, CSS and Javascript that is served 
to browsers can be packaged as a mobile app 
and distributed through the mobile app stores

● Static assets load from the phone locally instead 
of from the server and only AJAX calls are 
fetched remotely

● Fast start up, good performance even with poor 
signal quality



  

Benefits: Error handling

My Site

Data is not available

OK

Browser Server

Page with
user data

Browser

Server

JSON

Static
Server

HTML
Scripts



  

Benefit: Scalability

My Site

Browser
Data

ServerJSON

Static
ServerHTML

Scripts

User data

Since the presentation 
layer is rendered on the 
client the UI 
components can be 
served via a content 
distribution network. 
Typically whole files can 
be cached and it is no 
longer necessary to 
construct fine grained 
caches of page 
fragments to gain 
performance.

CDN

User: Joe
Pending messages: 3

Message
ServerJSON

Memcached



  

Benefit: Separation of concerns

My Site

Browser

Bar
Server

JSON

Static
Server

HTML
Scripts

Foo
Server

JSON

Foo Data Bar Data

Auth

OAuth

User interface is largely 
decoupled from 
business logic. 
Application servers are 
no longer tied to specific 
HTML presentations 
and can be reused in 
multiple applications. If 
there is shared 
authentication then 
everything can be 
driven off a single user 
log in.



  

Benefits: Security

● More resistant to XSS (cross side scripting) 
attacks.
– When using Javascript to set the text content of a DOM 

node there is never a chance that the text will be 
interpreted as Javascript and executed.

– Many frameworks (ie. Angular, RivetsJS) handle this 
automatically in their data binding system so inputs and 
divs are automatically secure against XSS.

– If AJAX calls require authentication tokens then many 
XSS link phishing attacks are also blocked.



  

Technology: RequireJS

Replaces carefully ordered <script> tags with 
explicit dependencies

<script src=”js/jquery.js”></script>
<script src=”js/undescore.js”></script>
<script src=”js/backbone.js”></script>
<script src=”js/foo.js”></script>
<script src=”js/bar.js”></script>
<script src=”js/cookie.js”></script>
<script src=”js/calendar.js”></script>
<script src=”js/beans.js”></script>
<script src=”js/numeral.js”></script>
<script src=”js/hammer.js”></script>
<script src=”js/wire.js”></script>
<script src=”js/baz.js”></script>

<script data-main=”js/main.js” 
src=”js/require.js”></script>

main.js:
require(['foo'], function(foo) { foo(); });

foo.js:
define('foo', [
  'underscore',
  'backbone',
  'bar'], function(foo, _, Backbone, bar) {
… do stuff …
});



  

Technology: BackboneJS

firstName: John
lastName: Doe

myEmp: Employee

require(['Employee'], 
  function(Employee') {
    var myEmp = 
        new Employee();
    ...

HTTP GET

myEmp.fetch();

HTTP POST or PUT

myEmp.save();

HTTP DELETE

myEmp.remove();

JSON

JSON

JSON

Backbone provides an 
abstraction layer for 
dealing with RESTful 
CRUD operations. This 
provides a simple API 
but, more importantly, 
decouples the web side 
logic from the details of 
how the data is 
delivered.



  

Technology: BackboneJS

firstName: John
lastName: Doe
salary: 45000

myEmp: Employee
rate: 0.31
amount: 13950

taxCalc: TaxCalc
change:
salary

Current salary: $45,000.00
Current taxes: $13,950.00

require(['Employee', 'TaxCalc'], 
  function(Employee, TaxCalc) {
    var myEmp = new Employee();
    var taxCalc = new TaxCalc({ emp: myEmp });
    ...

… inside TaxCalc …
emp.onChange('salary', function() {
  this.set('amount',
    emp.get('salary') * rate);
});

<div>
  <div>Current salary: {myEmp:salary|dollars}</div>
  <div>Current taxes: {taxCalc:amount|dollars}</div>
</div>

DOM 
update



  

Technology: RivetsJS

Like AngularJS, provides two-way updating 
between DOM and javascript objects:

scope.myvar = 'Hello world!';

Hello world!

Label: <input rv-value=”myvar”>
<div rv-text=”myvar”></div>

Label:  Hello world!



  

Technology: Bootstrap

● Pre-built recipes for handling adaptive websites 
that work well on desktop, tablet and mobile 
devices.

● Huge user and developer base (79K stars, 31K 
forks on GitHub)

● Many third party UI component add-ons that 
match the basic look and feel.

● Saves weeks, maybe months of development.



  

Technology: Bootstrap



  

Technology: PhoneGap

● Based on Apache's Cordova project
● Wraps a HTML/Javascript based application in a 

binary wrapper that allows it to be uploaded to 
native web stores

● Allows access to phone hardware features such as 
GPS, accelerometer, camera and local file storage

● Near native performance of interfaces and 
improving all the time



  

OFBiz: HTTP Integration

● OFBiz already provides basic support for 
delivering JSON data from web services but 
does not support mapping different HTTP 
methods to different services (ie. REST)

● For our projects we wrote a small servlet that 
implements RESTful method mapping and 
JSON input on the request body. This is what 
Backbone prefers.



  

OFBiz: Framework challenges

● One major challenge is the OFBiz screen/form widget 
system's deep set dependency on access to the 
delegator

● Unconstrained remote access to the delegator is a 
security problem

● Moqui attempts to solve this problem with its authz 
system but still makes extensive use of server side 
templates

● This is a problem for any client/server technology
(ie. iOS/Android native apps, Swing, etc.)



  

OFBiz: Server side Javascript

● The OFBiz-Rhino integration currently allows 
server side scripting with Javascript within 
OFBiz

● This provides opportunities to share code 
(validation, etc.) between the client and server

● The new Nashorn infrastructure opens 
possibilities for much better performance and 
node.js compatibility on the Java VM



  

OFBiz: ECAs and SECAs

● Using websockets or long-polling COMET it is 
possible to have ECA and SECA events 
propagate to the client

● We implemented this as an add-in servlet but it 
would be a nice addition to the core platform

● Allows “Google Docs-like” features in editing 
and display screens



  

Demo



  

Q&A



  

Thanks!
Let's keep the conversation going:

@schue
http://schu.es

ean@brainfood.com
http://github.com/schue/ac15demo

mailto:ean@brainfood.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

