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Its 2015: Your CTO wants Real-Time

Why now? Complex Event Processing (CEP) is not a new concept.
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Use Cases Across Industries
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Canonical Stream Processing Architecture
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Operations on Sliding Windows

Easily define operations over a sliding window of data

time 1 time 2 time 3 time 4 time 5
original
DStream
window-based
operation

windowed
DStream

window window window

at time 1 at time 3 attime 5

Specify:
 Window length as multiple of micro-batch size
* Sliding step size

NOTE: Provide adequate memory to hold sliding window worth
of data.



Maintain and update arbitrary state

updateStateByKey(...)

* Define initial state

* Provide state update function

* Continuously update with new information

Examples:
* Running count of words seen in text stream
* Per user session state from activity stream

Note:
Requires periodic check-pointing to fault-tolerant storage.



OSS options for Stream Processing

Spark Trident
Streaming (built on Storm)
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OSS options for Stream Processing

Spark Trident
Stream|ng (built on Storm)

Exactly Once

Processing™

Functions on Yes No Yes No

Sliding Windows

Higher Order Yes. No. Yes No

Functions From Spark.

(Aggregations, Joins, etc)

State-full Yes. No. Yes. Yes. But Node Local.

Operations Roll your Embedded RocksDb.
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updates is very high.



The Spark Streaming Advantage

* Automatically inherit developments in Spark
— DataFrames
— Mllib
— Dynamic Resource Allocation
— Vast ecosystem of “packages”

* Same framework for batch and streaming
— Operational ease
— Lambda Architectures are easy to implement



Exactly Once Processing

Should you care?
- In a cluster, machine failure is frequent

- “Double Counting” leads to False Positives:

Alerting, predictive analytics, etc will have too many false
positives when you double count data. You will end up
“loosening” your thresholds

Thus, not a trivial consideration.



Exactly Once in Spark Streaming

Receiving Data:
- Use Kafka Direct receiver
- If offsets are fixed, can re-Create micro-batch RDD identically

- What if producer put dupes in Kafka? Generate UUID per event and
dedupe.

Process Data:
- Deterministic DAG of operations

Output Processed Data:

- Failures can happen when only part of the output data is written
- Each micro-batch has a unique identifier: Batch-Time

- Use batch-time as key to perform “transactional writes”




Thank Youl!



