Near Real-Time Stream Processing
Architectures

Anand lyer
Senior Product Manager, Cloudera

aiyer@cloudera.com

Its 2015: Your CTO wants Real-Time

Why now? Complex Event Processing (CEP) is not a new concept.

Open Source

tools for

reliable high-throughput
low latency event
gueuing and processing

Exponential
growth in
continuous

Tools run on
“Commodity”
Hardware

data streams

Emergence of

Real-Time
Stream
Processing

Use Cases Across Industries

Credit Card Healthcare Retail @ Digital /
& Monetary Continuously ¢ Real-time .l Il |.| Advertising @
. monitor patient in-store E— .

Transactions vital stats and Offars ard & Marketing
Identify proactively identify Recommendations. Optimize and
fraudulent = =] atrisk patients. e Email and personalize digital ads
transactions m marketing campaigns based on real-time

as soon as based on real-time social information.

they occur. trends
Consumer Manufacturing Security & Transportation
Internet, . Identify Surveillance & Logistics
Mobile & equipment dentif * Real-time

failures and entry :

- traffic
E-Commerce react instantly threats conditions ﬁ
Optimize user * Perform proactive and intrusions, . Tracki

engagement based maintenance. both digital and floet racd ne

on user's current * ldentify product physical, in real-time. Ioec(:\tiaorr]m ;i§3ynamic
behavior. Dell\(er guality.defects re-routing to meet SLAs
recommendations immediately to prevent

relevant “in the resource wastage.

moment”

Canonical Stream Processing Architecture

Data
Sources

(I’)

HDFS

[m))) gm § [

-

Kafka Flume

g8

ActiveMQ

Spork
Streamlng

APACHE

I-IBHSE Cassandra

‘ mongoDB

N
]

Nosql Apache ",'4‘

Search
N~ 02020

Kafka
ActiveMQ ' spaitS

Streaming

Operations on Sliding Windows

Easily define operations over a sliding window of data

time 1 time 2 time 3 time 4 time 5
original
DStream
window-based
operation

windowed
DStream

window window window

at time 1 at time 3 attime 5

Specify:
 Window length as multiple of micro-batch size
* Sliding step size

NOTE: Provide adequate memory to hold sliding window worth
of data.

Maintain and update arbitrary state

updateStateByKey(...)

* Define initial state

* Provide state update function

* Continuously update with new information

Examples:
* Running count of words seen in text stream
* Per user session state from activity stream

Note:
Requires periodic check-pointing to fault-tolerant storage.

OSS options for Stream Processing

Spark Trident
Streaming (built on Storm)

Architecture

Language
Support

Resource
Managers

Latency
Throughput
Age

Known
Production
Instances

micro-batch

Scala, Java,
Python

YARN, Mesos,
Standalone

~0.5 seconds
%k %k k k
2+

50+
Multi-Vendor
Support

one-at-a-time

Java, Scala,
Python, Ruby,
Clojure...

YARN, Mesos

~100ms

* %k

3.5+

50+
Multi-Vendor
Support

micro-batch

Java, Clojure,
Scala

YARN, Mesos

~0.5 seconds

* %k %k

1.5+
?27??

Multi-Vendor
Support

one-at-a-time

Scala, Java

YARN

~100ms

% %k

1+

Outside

LinkedIn only a
handful.
No vendors.

OSS options for Stream Processing

Spark Trident
Stream|ng (built on Storm)

Exactly Once

Processing™

Functions on Yes No Yes No

Sliding Windows

Higher Order Yes. No. Yes No

Functions From Spark.

(Aggregations, Joins, etc)

State-full Yes. No. Yes. Yes. But Node Local.

Operations Roll your Embedded RocksDb.
own. Great if state

exceeds memory,
and volume of state
updates is very high.

The Spark Streaming Advantage

* Automatically inherit developments in Spark
— DataFrames
— Mllib
— Dynamic Resource Allocation
— Vast ecosystem of “packages”

* Same framework for batch and streaming
— Operational ease
— Lambda Architectures are easy to implement

Exactly Once Processing

Should you care?
- In a cluster, machine failure is frequent

- “Double Counting” leads to False Positives:

Alerting, predictive analytics, etc will have too many false
positives when you double count data. You will end up
“loosening” your thresholds

Thus, not a trivial consideration.

Exactly Once in Spark Streaming

Receiving Data:
- Use Kafka Direct receiver
- If offsets are fixed, can re-Create micro-batch RDD identically

- What if producer put dupes in Kafka? Generate UUID per event and
dedupe.

Process Data:
- Deterministic DAG of operations

Output Processed Data:

- Failures can happen when only part of the output data is written
- Each micro-batch has a unique identifier: Batch-Time

- Use batch-time as key to perform “transactional writes”

Thank Youl!

