
Sergey Beryozkin, Talend

 Apache CXF

Sergey Beryozkin, Talend

 Apache CXF

Practical JOSE with Apache CXFPractical JOSE with Apache CXFPractical JOSE with Apache CXFPractical JOSE with Apache CXF

What Is Apache CXF
• Production quality JAXRS and JAXWS services framework
• Popular with small and large users (customers) alike
• Used by top Apache projects such as TomEE and Tika
• Runs in OSGi and standalone servlet containers
• JAX-WS 2.2, JAX-RS 2.0, JAX-RS 2.1 to be supported in time
• Major focus on supporting secure HTTP services
• WS-Security, advanced HTTPS, OAuth1 and OAuth2, SAML

(Web SSO, Claim-based AC), and now – JOSE !
• Initial OpenIdConnect RP and IDP utility support

What Is JOSE
• JSON (JavaScript) Object Signing and Encryption
• Example of a productive cooperation between industry and

community cryptography experts
• Essential for advanced OAuth2 applications
• Works well in regular HTTP client server communications
• JSON is only for describing the details of a cryptographic

operation (algorithm, etc)
• Arbitrary formats for the secured payloads (plain text,

JSON, binary data, even XML if needed)
• Compactness of JOSE representations is a priority

JOSE Building Blocks
• JWA – JSON Web Algorithms
• JWK – JSON Web Key
• JWS – JSON Web Signature
• JWE – JSON Web Encryption
• JWT – JSON Web Token (depends on JOSE)
• JWS Key Management (future)

JWA Overview
• References all JOSE algorithms: signature algorithms,

content and key encryption algorithms
• Describes how some of JOSE algorithms work in cases

where JCA (or BouncyCastle, etc) does not offer a 1 to 1
support, example, AES-CBC-HMAC-SHA2

• Algorithm name is a type + hint: HS256 (HMac with SHA-
256), RSA-OAEP-256 (RSA OAEP key encryption with
SHA-256, etc)

• Offers security considerations common to all or specific to
some of algorithms

JWA in CXF
• Java Enums for representing Signature, Key and Content

Encryption algorithms
• Each enum has methods for checking a key size, JWA and

Java JCA algorithm names. This helps to generalize some
common signature and encryption processing code

• CXF code...

JWK Overview
• JSON Object for representing a cryptographic key, ex:

{"kty":"oct",
 “kid”:”AesKeyWrapKey”,
 "alg":"A128KW",
 "k":"GawgguFyGrWKav7AX4VKUg"}

• Keys for all of JOSE algorithms can be in JWK format
• JWK is light-weight and easy to process
• JWK can describe X509 chains if needed
• JWK 'kid' is a useful property to indicate a key rotation

JWK in CXF
• Support for representing a single JWK key or JWK key sets
• Reading keys from InputStream/URI, writing to

OutputStream
• Conversion from JWK to Java JCA RSA or EC Public/Private

keys or SecretKey and vice versa
• Getting a JWK key from a key set by its kid, use, type, etc
• JWK key and key sets can be JWE-encrypted (PBES2

password-based algorithm is default, accessed at
runtime with a password callback)

• CXF code...

JWS Overview
• Arbitrary payload (JSON, etc) is Base64URL-encoded
• Metadata (signature algorithm, etc) are in JOSE headers

(JSON object) and Base64URL-encoded too
• Metadata + “.” + Payload is passed to a JWS signature

function and is signed with HMac key or RSA or EC
private key, signature is Base64URL-encoded

• Compact JWS: Metadata + “.” + Payload + “.” + Signature
• JSON JWS: JSON Object with one or more signatures
• JWS Payload can be detached
• JWS sequence (it is just a string) can be JWE-encrypted

JWS Example
• Input: Headers: {“alg”:”HS256”}, Data: “Hello”
• Compact JWS:

eyJhbGciOiJIUzI1NiJ9.SGVsbG8.urVE_lxKKKtaqV4mFxuKWty
S4fMGs34edqwDxyh50mo

• JSON JWS: {
 “payload”:”SGVsbG8”, “signatures”: [

• {“protected”:”eyJhbGciOiJIUzI1NiJ9”,
“signature”:”urVE_lxKKKtaqV4mFxuKWtyS4fMGs34edqw
Dxyh50mo”}

]}

JWS in CXF
• JWSSignatureProvider supports creating signatures
• JWSSignatureVerifier supports validating signatures
• Providers and verifiers for all JWS JWA algorithms
• JWS Producer and JWS Consumer help with creating and

analyzing JWS Compact and JSON sequences
• JAX-RS JWS filters can stream while signing
• Support for creating Providers and Verifiers from JWKs and

JCA RSA/EC/HMac keys
• Single Verifier instance supports a single algorithm only
• CXF Code...

JWE Overview
• All JWE content algorithms create authentication tags
• Content encryption keys (CEKs), IVs are usually generated
• CEKs are encrypted/wrapped
• Direct encryption is possible (CEK is known to both parties)
• Compact JWE: Metadata + “.” + Encrypted CEK + “.” + IV

+ “.” + CipherText + “.” + Authentication Tag
• JSON JWE: JSON Object with CEK encrypted by one or more

algorithms - support for multiple recipients
• Metadata is integrity protected as additional authentication

data

JWE Example
• {“enc”:”A128GCM”,”alg”:”RSA-OAEP”}, Data: “Hi”
• Compact JWE (headers + CEK + IV + Cipher + Tag):

EyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ
 .RceDjhyuL6...lm_w
 .48V1_ALb6US04U3b.R4U.19ePGJBOpy7ZwTK63LxFtw

• JSON JWE:
{“protected”:”EyJhbG...ifQ”,
“recipients”:[{“encrypted_key”:”RceDjhyuL6...lm_w”}],
“iv”:”48V1_ALb6US04U3b”, “ciphertext”:”R4U”,
“tag”:”19ePGJBOpy7ZwTK63LxFtw”}

JWE In CXF
• JWEEncryptionProvider produces JWE encryptions with

KeyEncryptionProvider and ContentEncryptionProvider
• JWEDecryptionProvider decrypts JWE
• All of JWA JWE algorithms are supported
• Jwe Producer and Jwe Consumer help with creating and

processing JWE compact and JSON sequences
• JAX-RS JWE filters can stream while encrypting
• Support for creating Encryptors/Decryptors from JWKs or

JCA RSA/EC/Secret keys
• CXF code...

JWT Overview
• JWT is simply a JSON object for holding standard or custom

claims. SAML Assertion is an XML alternative.
• Not part of JOSE but uses it to get signed and/or encrypted
• Used most often in OAuth2: as internal access token

representation or (assertion) grant, id_token in OIDC, etc
• Might be used as a standard JSON wrapper in non OAuth2

services or as JWT HTTP Authorization scheme (CXF)
• Example of claims: {"iss":"joe","exp":1300819380}
• The above JSON text is JWS signed and/or JWE encrypted

JWT in CXF
• JwtToken and JwtClaims helper beans
• JwsJwtCompactProducer and Consumer for JWS signing
• JweJwtCompactProducer and Consumer for immediate JWE

encryption (skipping the signature process)
• 'JWT' HTTP Authorization scheme where a signed and/or

encrypted JWT is linked to a signed and/or encrypted
HTTP payload

• CXF Code...

CXF JAXRS JOSE Filters
• JAX-RS filters support a case where client and server work

with plain Java beans but the data which goes on the
wire is JWS-signed and/or JWE-encrypted

• The data secured by filters can be linked to an
authenticated user with a JWT authorization scheme

• JWS and JWE Writers and JWE Readers and JWS readers can
be chained (sign-then-encrypt on the output, decrypt-
then-verify on the input)

• JWS and JWE writers can do the best effort at streaming
• Filters supported by Java KeyStores or JWK stores

CXF JOSE Configuration
• Main configuration is about supporting JAX-RS JOSE filters

with traditional Java Key Stores or JWK stores
• In most cases a filter reads a Java properties file, which

points to either a Java Key Store or JWK store
• JWK store is usually a file where an array of JWK keys (JWK

key set) is kept. The file can be JWE-encrypted
• Alternatively, a key set or individual JWK can be inlined

directly inside the Properties file – in the JWE-encrypted
form

• Many options for optimizing the configuration when
possible: ex, Properties can specify an algorithm name
but it is not needed if a JWK key has it too, etc, etc

JOSE and OAuth2
• At the moment JOSE is primarily utilized in the OAuth2

world, though using JOSE in a non-OAuth2 world will
inevitably become more wide-spread over time.

• JWT may represent an access token or JWT Bearer grant
and signed and/or encrypted

• JWT can be used as part of a secured authorization code
request

• JWT is a secured OIDC id_token, etc...
• JWKs are used in many places, example, for distributing

OAuth2 PoP token secret keys, for validating OIDC
id_token, etc, etc

What is next for JOSE
• Final optimizations to the specification texts
• Possible interoperability events
• Key Management for JWS (example, using HMAC to do JWS

is effectively a direct key signature where both parties
need to know a key in advance, similar to direct JWE
encryption)

• COSE – optimized version of JOSE
• JSON Clear Signature (Anders Rundgren)

Demo
• Shows a WebCrypto (http://www.w3.org/TR/WebCryptoAPI/)

Java Script client sending a JWS-signed payload to
Apache CXF server (JWS interoperability)

• Original demo was created by Anders Rundgren, available
at https://mobilepki.org/WCPPSignatureDemo/home

• Anders explained how to build a demo, one of original
demo servlets was replaced by CXFServlet and CXF JAX-
RS server with the CXF JOSE JwsCompactConsumer.

• WebCrypto demo client has not been modified
• The actual demo...

https://mobilepki.org/WCPPSignatureDemo/home

Alternatives to CXF JOSE
• Jose4J
• Apache Oltu
• RestEasy
• Spring Security
• Only a start...

Conclusion
• JOSE (and OAuth2) will have a major impact on the way

secure HTTP services are written
• Questions ?

Thank You !
users@cxf.apache.org
sberyozkin.blogspot.com

Thank You !
users@cxf.apache.org
sberyozkin.blogspot.com

	Slide2
	Slide1
	Slide3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

