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What Is Apache CXF
• Production quality JAXRS and JAXWS services framework
• Popular with small and large users (customers) alike
• Used by top Apache projects such as TomEE and Tika
• Runs in OSGi and standalone servlet containers
• JAX-WS 2.2, JAX-RS 2.0, JAX-RS 2.1 to be supported in time
• Major focus on supporting secure HTTP services
• WS-Security, advanced HTTPS, OAuth1 and OAuth2, SAML 

(Web SSO, Claim-based AC), and now – JOSE !
• Initial OpenIdConnect RP and IDP utility support



What Is JOSE
• JSON (JavaScript) Object Signing and Encryption
• Example of a productive cooperation between industry and 

community cryptography experts
• Essential for advanced OAuth2 applications
• Works well in regular HTTP client server communications
• JSON is only for describing the details of a cryptographic 

operation (algorithm, etc)
• Arbitrary formats for the secured payloads (plain text, 

JSON, binary data, even XML if needed)
• Compactness of JOSE representations is a priority



JOSE Building Blocks
• JWA – JSON Web Algorithms 
• JWK – JSON Web Key
• JWS – JSON Web Signature
• JWE – JSON Web Encryption
• JWT – JSON Web Token (depends on JOSE)
• JWS Key Management (future)



JWA Overview
• References all JOSE algorithms: signature algorithms, 

content and key encryption algorithms
• Describes how some of JOSE algorithms work in cases 

where JCA (or BouncyCastle, etc) does not offer a 1 to 1 
support, example, AES-CBC-HMAC-SHA2

• Algorithm name is a type + hint: HS256 (HMac with SHA-
256), RSA-OAEP-256 (RSA OAEP key encryption with 
SHA-256, etc)

• Offers security considerations common to all or specific to 
some of algorithms



JWA in CXF
• Java Enums for representing Signature, Key and Content 

Encryption algorithms
• Each enum has methods for checking a key size, JWA and 

Java JCA algorithm names. This helps to generalize some 
common signature and encryption processing code

• CXF code...



JWK Overview
• JSON Object for representing a cryptographic key, ex:

{"kty":"oct",
  “kid”:”AesKeyWrapKey”, 
  "alg":"A128KW",
  "k":"GawgguFyGrWKav7AX4VKUg"}

• Keys for all of JOSE algorithms can be in JWK format
• JWK is light-weight and easy to process
• JWK can describe X509 chains if needed
• JWK 'kid' is a useful property to indicate a key rotation



JWK in CXF
• Support for representing a single JWK key or JWK key sets
• Reading keys from InputStream/URI, writing to 

OutputStream
• Conversion from JWK to Java JCA RSA or EC Public/Private 

keys or SecretKey and vice versa
• Getting a JWK key from a key set by its kid, use, type, etc
• JWK key and key sets can be JWE-encrypted (PBES2 

password-based algorithm is default, accessed at 
runtime with a password callback)

• CXF code...



JWS Overview
• Arbitrary payload (JSON, etc) is Base64URL-encoded
• Metadata (signature algorithm, etc) are in JOSE headers 

(JSON object) and Base64URL-encoded too
• Metadata + “.” + Payload is passed to a JWS signature 

function and is signed with HMac key or RSA or EC 
private key, signature is Base64URL-encoded

• Compact JWS: Metadata + “.” + Payload + “.” + Signature
• JSON JWS: JSON Object with one or more signatures
• JWS Payload can be detached
• JWS sequence (it is just a string) can be JWE-encrypted

 



JWS Example
• Input:  Headers: {“alg”:”HS256”}, Data: “Hello”
• Compact JWS:

eyJhbGciOiJIUzI1NiJ9.SGVsbG8.urVE_lxKKKtaqV4mFxuKWty
S4fMGs34edqwDxyh50mo

• JSON JWS: {
   “payload”:”SGVsbG8”, “signatures”: [ 

•     {“protected”:”eyJhbGciOiJIUzI1NiJ9”,         
“signature”:”urVE_lxKKKtaqV4mFxuKWtyS4fMGs34edqw
Dxyh50mo”} 

    ]} 



JWS in CXF
• JWSSignatureProvider supports creating signatures
• JWSSignatureVerifier supports validating signatures
• Providers and verifiers for all JWS JWA algorithms
• JWS Producer and JWS Consumer help with creating and 

analyzing JWS Compact and JSON sequences
• JAX-RS JWS filters can stream while signing
• Support for creating Providers and Verifiers from JWKs and 

JCA RSA/EC/HMac keys
• Single Verifier instance supports a single algorithm only
• CXF Code... 



JWE Overview
• All JWE content algorithms create authentication tags
• Content encryption keys (CEKs), IVs are usually generated
• CEKs are encrypted/wrapped
• Direct encryption is possible (CEK is known to both parties)
• Compact JWE: Metadata + “.” + Encrypted CEK + “.” + IV 

+ “.” + CipherText + “.” + Authentication Tag
• JSON JWE: JSON Object with CEK encrypted by one or more  

algorithms  - support for multiple recipients
• Metadata is integrity protected as additional authentication 

data



JWE Example
• {“enc”:”A128GCM”,”alg”:”RSA-OAEP”}, Data: “Hi”
• Compact JWE (headers + CEK + IV + Cipher + Tag): 

EyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ
    .RceDjhyuL6...lm_w
    .48V1_ALb6US04U3b.R4U.19ePGJBOpy7ZwTK63LxFtw

• JSON JWE: 
{“protected”:”EyJhbG...ifQ”, 
“recipients”:[{“encrypted_key”:”RceDjhyuL6...lm_w”}],
“iv”:”48V1_ALb6US04U3b”, “ciphertext”:”R4U”,
“tag”:”19ePGJBOpy7ZwTK63LxFtw”}



JWE In CXF
• JWEEncryptionProvider produces JWE encryptions with 

KeyEncryptionProvider and ContentEncryptionProvider
• JWEDecryptionProvider decrypts JWE
• All of JWA JWE algorithms are supported
• Jwe Producer and Jwe Consumer help with creating and 

processing JWE compact and JSON sequences
• JAX-RS JWE filters can stream while encrypting
• Support for creating Encryptors/Decryptors from JWKs or 

JCA RSA/EC/Secret keys 
• CXF code...



JWT Overview
• JWT is simply a JSON object for holding standard or custom 

claims. SAML Assertion is an XML alternative.
• Not part of JOSE but uses it to get signed and/or encrypted
• Used most often in OAuth2: as internal access token 

representation or (assertion) grant, id_token in OIDC, etc
• Might be used as a standard JSON wrapper in non OAuth2 

services or as JWT HTTP Authorization scheme (CXF)
• Example of claims: {"iss":"joe","exp":1300819380}
• The above JSON text is JWS signed and/or JWE encrypted 



JWT in CXF
• JwtToken and JwtClaims helper beans
• JwsJwtCompactProducer and Consumer for JWS signing
• JweJwtCompactProducer and Consumer for immediate JWE 

encryption (skipping the signature process)
• 'JWT' HTTP Authorization scheme where a signed and/or 

encrypted JWT is linked to a signed and/or encrypted 
HTTP payload

• CXF Code...



CXF JAXRS JOSE Filters
• JAX-RS filters support a case where client and server work 

with plain Java beans but the data which goes on the 
wire is JWS-signed and/or JWE-encrypted

• The data secured by filters can be linked to an 
authenticated user with a JWT authorization scheme

• JWS and JWE Writers and JWE Readers and JWS readers can 
be chained (sign-then-encrypt on the output, decrypt-
then-verify on the input)

• JWS and JWE writers can do the best effort at streaming
• Filters supported by Java KeyStores or JWK stores



CXF JOSE Configuration
• Main configuration is about supporting JAX-RS JOSE filters 

with traditional Java Key Stores or JWK stores
• In most cases a filter reads a Java properties file, which 

points to either a Java Key Store or JWK store
• JWK store is usually a file where an array of JWK keys (JWK 

key set) is kept. The file can be JWE-encrypted
• Alternatively, a key set or individual JWK can be inlined 

directly inside the Properties file – in the JWE-encrypted 
form

• Many options for optimizing the configuration when 
possible: ex, Properties can specify an algorithm name 
but it is not needed if a JWK key has it too, etc, etc



JOSE and OAuth2
• At the moment JOSE is primarily utilized in the OAuth2 

world, though using JOSE in a non-OAuth2 world will 
inevitably become more wide-spread over time.

• JWT may represent an access token or JWT Bearer grant 
and signed and/or encrypted

• JWT can be used as part of a secured authorization code 
request

• JWT is a secured OIDC id_token, etc...
• JWKs are used in many places, example, for distributing 

OAuth2 PoP token secret keys, for validating OIDC 
id_token, etc, etc



What is next for JOSE 
• Final optimizations to the specification texts
• Possible interoperability events
• Key Management for JWS (example, using HMAC to do JWS 

is effectively a direct key signature where both parties 
need to know a key in advance, similar to direct JWE 
encryption)

• COSE – optimized version of JOSE
• JSON Clear Signature (Anders Rundgren)



Demo
• Shows a WebCrypto (http://www.w3.org/TR/WebCryptoAPI/) 

Java Script client sending a JWS-signed  payload to 
Apache CXF server (JWS interoperability)

• Original demo was created by Anders Rundgren, available 
at https://mobilepki.org/WCPPSignatureDemo/home

• Anders explained how to build a demo, one of original 
demo servlets was replaced by CXFServlet and CXF JAX-
RS server with the CXF JOSE JwsCompactConsumer. 

• WebCrypto demo client has not been modified
• The actual demo...

https://mobilepki.org/WCPPSignatureDemo/home


Alternatives to CXF JOSE
• Jose4J
• Apache Oltu
• RestEasy
• Spring Security
• Only a start...



Conclusion
• JOSE (and OAuth2) will have a major impact on the way 

secure HTTP services are written
• Questions ?



Thank You !
users@cxf.apache.org
sberyozkin.blogspot.com
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