
BUILT FOR THE SPEED OF BUSINESS

2 © Copyright 2013 Pivotal. All rights reserved.

Eliminate disk access in the real time path

Too much I/O
Design roots don’t necessarily apply today
•  Too much focus on ACID
•  Disk synchronization bottlenecks

Buffers
primarily

tuned for IO
First write to

Log

Second write
to Data Files

We Challenge the traditional RDBMS design NOT SQL

3 © Copyright 2013 Pivotal. All rights reserved.

‘Memory is the new bottleneck’

Source: MonetDB

4 © Copyright 2013 Pivotal. All rights reserved.

IMDG basic concepts

4

–  Distributed memory oriented store
•  KV/Objects or JSON
•  Queryable, Indexable and transactional

–  Multiple storage models
•  Replication, partitioning in memory
•  With synchronous copies in cluster
•  Overflow to disk and/or RDBMS

Handle thousands of concurrent connections

Synchronous replication for
slow changing data

Replicated
Region

Partition for large data or highly transactional data

Partitioned Region

Redundant copy

–  Parallelize Java App logic
–  Multiple failure detection schemes
–  Dynamic membership (elastic)

–  Vendors differentiate on
•  Query support, WAN, events, etc

Low latency for
thousands of

clients

5 © Copyright 2013 Pivotal. All rights reserved. 5

Key IMDG pattern - Distributed Caching
•  Designed to work with existing RDBs

–  Read through: Fetch from DB on cache miss
–  Write through: Reflect in cache IFF DB write succeeds
–  Write behind: reliable, in-order queue and batch write to DB

6 © Copyright 2013 Pivotal. All rights reserved.

Traditional RDB integration can be challenging

Memory Tables
(1)

DB WRITER

(2)

(3)

(4)

Memory Tables
(1)

DB WRITER

(2)

(3)

(4)

Synchronous “Write through”

Single point of bottleneck and failure
Not an option for “Write heavy”

Complex 2-phase commit protocol
Parallel recovery is difficult

(1)
Queue

(2)Updates

Asynchronous,
Batches

DB Synchronizer

(1)
Queue

(2)

DB Synchronizer

Updates

Asynchronous “Write behind”

Cannot sustain high “write” rates
Queue may have to be persistent

Parallel recovery is difficult

7 © Copyright 2013 Pivotal. All rights reserved.

Some IMDG, NoSQL offer ‘Shared nothing persistence’

•  Append only operation logs
•  Fully parallel
•  Zero disk seeks

•  But, cluster restart requires
log scan

•  Very large volumes pose
challenges

Memory
Tables

Append only
Operation logs

OS Buffers

LOG
Compressor

Record1

Record2

Record3

Record1

Record2

Record3

Memory
Tables

Append only
Operation logs

OS Buffers

LOG
Compressor

Record1

Record2

Record3

Record1

Record2

Record3

8 © Copyright 2013 Pivotal. All rights reserved. 8 © Copyright 2013 Pivotal. All rights reserved.

GemFire – How we got here

9 © Copyright 2013 Pivotal. All rights reserved. 9 © Copyright 2013 Pivotal. All rights reserved.

GemFire – The world as we see it

10 © Copyright 2013 Pivotal. All rights reserved.

2004 2008 2014

•  Massive increase in data
volumes

•  Falling margins per
transaction

•  Increasing cost of IT
maintenance

•  Need for elasticity in
systems

•  Financial Services
Providers (Every major
wall steet bank)

•  Department of Defense

•  Real Time response needs
•  Time to market constraints
•  Need for flexible data

models across enterprise
•  Distributed development
•  Persistence + In-memory

•  Global data visibility needs
•  Fast Ingest needs for data
•  Need to allow devices to

hook into enterprise data
•  Always on

•  Largest travel Portal
•  Airlines
•  Trade clearing
•  Online gambling

•  Largest Telcos
•  Large mfrers
•  Largest Payroll processor
•  Auto insurance giants
•  Largest rail systems on

earth

Hybrid Transactional
/Analytics grids

Our GemFire Journey Over The Years

11 © Copyright 2013 Pivotal. All rights reserved.

Why OSS? Why Now? Why Apache?

�  Open Source Software is fundamentally changing buying patterns
–  Developers have to endorse product selection (No longer CIO handshake)
–  Community endorsement is key to product visibility
–  Open source credentials attract the best developers
–  Vendor credibility directly tied to street credibility of product

�  Align with the tides of history
–  Customers increasingly asking to participate in product development
–  Resume driven development forces customers to consider OSS products
–  Allow product development to happen with full transparency

�  Apache is where you go to build Open Source street cred
–  Transparent, meritocracy which puts developers in charge
–  Roman keeps shouting “Apache!” every few hours

12 © Copyright 2013 Pivotal. All rights reserved.

Geode Will Be A Significant Apache Project

�  Over a 1000 person years invested into cutting edge R&D

�  Thousands of production customers in very demanding verticals

�  Cutting edge use cases that have shaped product thinking

�  Tens of thousands of distributed , scaled up tests that can randomize
every aspect of the product

�  A core technology team that has stayed together since founding

�  Performance differentiators that are baked into every aspect of the
product

13 © Copyright 2013 Pivotal. All rights reserved. 13 © Copyright 2013 Pivotal. All rights reserved.

GemFire – Architecture Designed For
Speed & Scale

14 © Copyright 2013 Pivotal. All rights reserved.

Gemfire High Level Architecture

15 © Copyright 2013 Pivotal. All rights reserved.

What makes it fast?

�  Minimize copying
–  Clients dynamically acquire partitioning meta data for single hop access
–  Avoid JVM memory pools to the extent possible

�  Minimize contention points .. avoid offloading to OS scheduler
–  Highly concurrent data structures
–  Efficient data transmission – Nagle’s Algorithm

�  Flexible consistency model
–  FIFO consistency across replicas but NO global ordering across threads
–  Promote single row transactions (i.e no transactions)
–  No lock escalation strategies … no Serializable transactions

16 © Copyright 2013 Pivotal. All rights reserved.

What makes it fast?

�  Avoid disk seeks
–  Data kept in Memory – 100 times faster than disk
–  Keep indexes in memory, even when data is on disk
–  Direct pointers to disk location when offloaded (single IOP fetch)
–  Flush only to OS buffers

▪  Mitigate failure risks by concurrent disk write on replicas

�  Tiered Caching
–  Eventually consistent client caches
–  Avoid Slow receiver problems

�  Partition and parallelize everything
–  Data. Application processing (procedures, callbacks), queries, Write behind, CQ/Event

processing

17 © Copyright 2013 Pivotal. All rights reserved. 17 © Copyright 2013 Pivotal. All rights reserved.

GemFire – Common Usage Patterns

18 © Copyright 2013 Pivotal. All rights reserved.

“low touch” Usage Patterns
Simple template for TCServer, TC, App servers

Shared nothing persistence, Global session state
HTTP Session management

Set Cache in hibernate.cfg.xml
Support for query and entity caching

Hibernate L2 Cache plugin

Servers understand the memcached wire protocol

Use any memcached client Memcached protocol

<bean id="cacheManager"
class="org.springframework.data.gemfire.support.GemfireCacheManager" Spring Cache Abstraction

19 © Copyright 2013 Pivotal. All rights reserved.

“Write thru” Distributed caching

Pre-load data into system

Lazily load cache misses

Configure LRU eviction or expiry for
large data

“Write thru” – participate in container

transaction

20 © Copyright 2013 Pivotal. All rights reserved.

Distributed caching with Async writes to DB

Buffer high write rate from DB

Writes can be enqueued in memory
redundantly on multiple nodes

Or, also be persisted to disk on each

node

Batches can be conflated and written
to DB

Pattern for “high ingest” into Data

Warehouse

21 © Copyright 2013 Pivotal. All rights reserved.

As a scalable OLTP data store

Shared nothing persistence to disk

Backup and recovery

No Database to configure and be throttled by

22 © Copyright 2013 Pivotal. All rights reserved.

As embedded, clustered Java database

Just deploy a JAR or WAR into clustered App
nodes

Data can be sync’d with DB is partitioned or

replicated across the cluster

Low cost and easy to manage

23 © Copyright 2013 Pivotal. All rights reserved.

To process app behavior in parallel

Map-reduce but based on simpler RPC

24 © Copyright 2013 Pivotal. All rights reserved.

To make data visible across sites in real time

25 © Copyright 2013 Pivotal. All rights reserved.

•  Data	
 stored	
 within	
 GemFire	
 in	
 a	
 “sliding	
 window”	

•  GemFire	
 map-­‐reduce	
 style	
 in-­‐memory	
 analy:cs	
 can	

be	
 performed	
 with	
 data	
 locality	
 	

–  Ex:	
 Viola:on	
 of	
 known	
 trading	
 paBerns	

•  Benefit:	
 Early-­‐warning	
 indicators	
 can	
 be	
 iden:fied	

faster	
 than	
 wai:ng	
 for	
 analysis	
 on	
 just	
 Pivotal	
 HD	

•  Benefit:	
 Real-­‐:me	
 analy:cs	
 can	
 beBer	
 influence	

what	
 kind	
 of	
 big	
 data	
 analy:cs	
 need	
 to	
 be	

performed	

Pivotal HD

GemFire

Micro-batches

Analysis
Tools

Sliding
Window

Real time
analytics

Alerts

influence

Real Time Analytics With GemFire

26 © Copyright 2013 Pivotal. All rights reserved. 26 © Copyright 2013 Pivotal. All rights reserved.

Analytics on HDFS

SPEED

27 © Copyright 2013 Pivotal. All rights reserved.

The Pivotal Data Fabric (core platform)

HDFS

S
P
R
I
N
G

Analytic DB RealTime/Operational
DB

Stream processing
Deep Scale SQL

SQL
Objects
JSON

Disparate input sources

Federated
Data Access

28 © Copyright 2013 Pivotal. All rights reserved.

Mapping to Products

HDFS

HAWQ GemFire

SpringXD
Deep Scale SQL

SQL
Objects
JSON

Disparate input sources

S
P
R
I
N
G

GemFire
PXF

29 © Copyright 2013 Pivotal. All rights reserved.

Use case: Telemetry – Net optimization, Location based Svc

Revenue Generation
Real-time Location based

Mobile Advertising (B2B2C)

Location Based Services
(B2C, B2B, B2B2C)

Revenue Protection
Customer experience

management to reduce churn

Customers Sentiment
analysis

Network Efficiency
Network bandwidth

optimisation

Network signalling
maximisation

•  Network optimization
–  E.g. re-reroute call to another cell tower if congestion detected

•  Location based Ads
–  Match incoming event to Subscriber profile; If ‘Opt-in’ show location sensitive Ad

•  Challenge: Too much streaming data
–  Many subscribers, lots of 2G/3G/4G voice/data
–  Network events: location events, CDRs, network issues

30 © Copyright 2013 Pivotal. All rights reserved.

Scalable Big Data Architecture for Real time Network analytics

In-Memory Cluster Subscriber
Profile, etc

HDFS

Stream ingestion
-  Filter (‘opt-in’), normalize
-  Dispatch real time events

2). Derived data
HAWQ

Batch analytics –
Trending, Subscriber

location based
analytics, etc

3). Analyze
billions of events

Profiles, models

1).
Raw
data

Business Rules Engine

Rule
Execution

Rule
Triggering

Spring Framework

Network sources

31 © Copyright 2013 Pivotal. All rights reserved. 31 © Copyright 2013 Pivotal. All rights reserved.

Demo

32 © Copyright 2013 Pivotal. All rights reserved.

Post Region
Partitioned

People Region
Partitioned

Social Network

Person

Name: String
Description:String

Post

Id: PostId(name, date)
Text: String

33 © Copyright 2013 Pivotal. All rights reserved.

public interface PersonRepository extends CrudRepository<Person, String> {
}

Basic Save Code

@Autowired
PersonRepository people;

Public static void main(String[] args) {
{
 people.save(new Person(name));
}

34 © Copyright 2013 Pivotal. All rights reserved.

<bean id="pdxSerializer"
class="com.gemstone.gemfire.pdx.ReflectionBasedAutoSerializer">

 <constructor-arg value="io.pivotal.happysocial.model.*"/>
</bean>

<gfe:cache pdx-serializer-ref="pdxSerializer"/>

<gfe:partitioned-region id="people" copies="1"/>

Configuration

35 © Copyright 2013 Pivotal. All rights reserved.

public interface PostRepository extends
 GemfireRepository<Post, PostId> {

 @Query("select * from /posts where id.person=$1")
 public Collection<Post> findPosts(String personName);
}

Queries

Collection<Post> posts = postRepository.findPosts(personName);

Query Nested Objects

36 © Copyright 2013 Pivotal. All rights reserved.

public interface PostRepository extends
 GemfireRepository<Post, PostId> {

 @Query("select * from /posts where id.person=$1")
 public Collection<Post> findPosts(String personName);
}

Indexes

Collection<Post> posts = postRepository.findPosts(personName);

Query Nested Objects

<gfe:index id="postAuthor" expression="id.person" from="/posts"/>

37 © Copyright 2013 Pivotal. All rights reserved.

<gfe:partitioned-region id="posts" copies="1" colocated-with="people">

 <gfe:partition-resolver ref="partitionResolver"/>
</gfe:partitioned-region>

Colocation

Related Posts
Are colocated

38 © Copyright 2013 Pivotal. All rights reserved.

Functions

client.getSentiment(filter);

String personName = pe
Collection<Post> posts =
String sentiment = sentim
return new SentimentR

Behavior is sent to
data (with filter) Data is Colocated

39 © Copyright 2013 Pivotal. All rights reserved.

Sample Function – Client Side
@Component
@OnRegion(region = "posts")
public interface FunctionClient {
 public List<SentimentResult> getSentiment(@Filter Set<String> people);
}

40 © Copyright 2013 Pivotal. All rights reserved.

Sample Function – Server Side
@Autowired private PostRepository postRepository;
@Autowired SentimentAnalyzer sentimentAnalyzer;

@GemfireFunction
public SentimentResult getSentiment(@Filter Set<String>

 personNames) {
 String personName = personNames.iterator().next();
 Collection<Post> posts = postRepository.findPosts(personName);
 String sentiment = sentimentAnalyzer.analyze(posts);
 return new SentimentResult(sentiment, personName);
 }

41 © Copyright 2013 Pivotal. All rights reserved.

Parallel, Highly Available Queues

42 © Copyright 2013 Pivotal. All rights reserved.

Modify
k1->v5

Create
k6->v6

Create
k1->v1

Create
k2->v2

Modify
k1->v3

Create
k4->v4

Modify
k1->v5

Create
k6->v6

Shared Nothing Persistence

Put k6->v6
k6->v6 k6->v6

Operation Logs
with compaction

43 © Copyright 2013 Pivotal. All rights reserved.

GemFire (Geode) 3.5-4.5X Faster Than Cassandra
for YCSB

44 © Copyright 2013 Pivotal. All rights reserved.

Horizontal Scaling for GemFire (Geode) Reads
With Consistent Latency and CPU

•  Scaled from 256 clients and 2 servers to 1280 clients and 10 servers
•  Partitioned region with redundancy and 1K data size

