[?1votal

BUILT FOR THE SPEED OF BUSINESS

Eliminate disk access in the real time path
We Challenge the traditional RDBMS design NOT SQL

Typical relational database architecture

B u ffe I's '\\ Daabase Irstance J

primarily [mmdm«e Log bufer First write to

Buffers and relaed
tuned for IO processes are tuned for & Log
Query ssssss 10. Manage 1O block
[Lacic Marisger Database writer J (IO services forlogging J
/ 3

=l

Second write
to Data Files

Too much I/O
Design roots don’t necessarily apply today

« Too much focus on ACID

» Disk sinchronization bottlenecks

© Copyright 2013 Pivotal. All rights reserved. 2

‘Memory is the new bottleneck’

Hardware Changes: The Memory Wall
1000

80
100 -

10
10

cles / instruction

6

Trip to memory = 1000s of instructions!

n
(72}
8 0.1 1 -=CPU(s)
g_ —+— Memory 0.
0.01
VAX/1980 PPro/1996 2010+

Pivotal.

© Copyright 2013 Pivotal. All rights reserved. 3

IMDG basic concepts

— Distributed memory oriented store
+ KV/Objects or JSON
* Queryable, Indexable and transactional

— Multiple storage models
* Replication, partitioning in memory
» With synchronous copies in cluster
» Overflow to disk and/or RDBMS

bt

Replicated
egion

Handle thousands of concurrent connections

Synchronous replication for
slow changing data

Redundant copy
I | | |

Partiti

d Region — —
9 L -

Parallelize Java App logic
Multiple failure detection schemes
Dynamic membership (elastic)

Vendors differentiate on
* Query support, WAN, events, etc

b

© Copyright 2013 Pivotal. All rights reserved.

Key IMDG pattern - Distributed Caching

» Designed to work with existing RDBs
— Read through: Fetch from DB on cache miss
— Write through: Reflect in cache IFF DB write succeeds
— Write behind: reliable, in-order queue and batch write to DB

Read through Cache Write through Cache
Fetch by Primary Key Memory Tables Fetch by Primary Key | Memory Tables
(1) (@) (1) (4)

ROW LOADER

& @& = @)

DB WRITER |

(3) %

i H Asynchronous ‘write-behind’
Updates | @) Queue Cache

(1) :
| i Asynchronous,

| H Batches

DB Synchronizer

© Qgpyright 2013 Pivotal. All rights reserved. 5

Traditional RDB integration can be challenging

Memory Tables

(1) @)

@)
DB WRITER |
[=
{ Memory Tables
(1) (4)]
5 =
(2)|
DB WRITER | P
3)

Synchronous “Write through”

Single point of bottleneck and failure
Not an option for “Write heavy”
Complex 2-phase commit protocol

Updates

Queue

(1) (2)_

Updates

\

DB Synchronizer

Queue

(1) @,

I
I
\/

DB Synchronizer

-

Asynchronous “Write behind”

Cannot sustain high “write” rates
Queue may have to be persistent
Parallel recovery is difficult

~

Parallel recovery is difficult

© Copyright 2013 Pivotal. All rights reserved.

Some IMDG, NoSQL offer ‘Shared nothing persistence’

Append only operation logs

Y 1y Fully parallel
Lot - -, , Lo . -, « Zero disk seeks
emory : H emory :
Tables Tables |
| [- But, cluster restart requires
| log scan
Vo Vol
I— —— * Very large volumes pose
o) challenges

Append only
Operation logs

Append only
Operation logs

¥ 2
o>~ .
S
>

GemFire

© Copyright 2013 Pivotal. All rights reserved. 7

GemFire — How we got here

GemFire — The world as we see it

Our GemkFire Journey Over The Years

 Massive increase in data * Real Time response needs * Global data visibility needs
volu_mes _ * Time to market constraints » Fast Ingest needs for data

» Falling margins per Need for flexible data Need to allow devices to
transaction models across enterprise hook into enterprise data

* Increasing cost of IT * Distributed development * Always on

maintenance
» Need for elasticity in
systems

Persistence + In-memory

» Largest Telcos Hylrid Transactional
« Financial Services - Largest travel Portal Il:arge rtml;rers | /Anglytics grids
Providers (Every major « Airlines : A?Jt[?)eiflsu raayr:c?e S{SS;SSOF
wall steet bank) » Trade clearing * Largest rail systems on

» Department of Defense * Online iamblini iiii

© Copyright 2013 Pivotal. All rights reserved. 10

Why OSS? Why Now? Why Apache?

e Open Source Software is fundamentally changing buying patterns
— Developers have to endorse product selection (No longer CIO handshake)
— Community endorsement is key to product visibility
— Open source credentials attract the best developers
— Vendor credibility directly tied to street credibility of product

 Align with the tides of history
— Customers increasingly asking to participate in product development
— Resume driven development forces customers to consider OSS products
— Allow product development to happen with full transparency

e Apache is where you go to build Open Source street cred
— Transparent, meritocracy which puts developers in charge
— Roman keeps shouting “Apache!” every few hours

© Copyright 2013 Pivotal. All rights reserved. 11

Geode Will Be A Significant Apache Project

e Over a 1000 person years invested into cutting edge R&D

Thousands of production customers in very demanding verticals

Cutting edge use cases that have shaped product thinking

Tens of thousands of distributed , scaled up tests that can randomize
every aspect of the product

* A core technology team that has stayed together since founding

* Performance differentiators that are baked into every aspect of the
product

Pivotal.

© Copyright 2013 Pivotal. All rights reserved. 12

GemFire — Architecture Designed For

Speed & Scale

Gemfire High Level Architecture

Java c#®

Client Client JDBC or ADO.NET

-

- Many physical machine nodes appear
as one logical system

J
|

As data changes,

subscribers are pushed . Data transparently replicated and/or partitiéned;
notification events Redundant storage can be in memory and/ér on
disk H

N i
BEE || BB !
|
" " Incrasel_Decreasq
S S capacity on the fl)tl

P Ty

Shared Nothing disk Synchronous read through,

persistence write through or
Each cache instance can J .
optionally persist to disk Asynchronous write-behind to

other data sources and sinks

[=] B [

© Copyright 2013 Pivotal. All rights reserved. 14

What makes it fast?

e Minimize copying
— Clients dynamically acquire partitioning meta data for single hop access
— Avoid JVM memory pools to the extent possible

e Minimize contention points .. avoid offloading to OS scheduler
— Highly concurrent data structures
— Efficient data transmission — Nagle’s Algorithm

* Flexible consistency model
— FIFO consistency across replicas but NO global ordering across threads
— Promote single row transactions (i.e no transactions)
— No lock escalation strategies ... no Serializable transactions

Pivotal.

© Copyright 2013 Pivotal. All rights reserved. 15

What makes it fast?

* Avoid disk seeks
— Data kept in Memory — 100 times faster than disk
— Keep indexes in memory, even when data is on disk
— Direct pointers to disk location when offloaded (single IOP fetch)

— Flush only to OS buffers
Mitigate failure risks by concurrent disk write on replicas

e Tiered Caching
— Eventually consistent client caches
— Avoid Slow receiver problems

e Partition and parallelize everything

— Data. Application processing (procedures, callbacks), queries, Write behind, CQ/Event
processing

© Copyright 2013 Pivotal. All rights reserved. 16

GemFire — Common Usage Patterns

“low touch™ Usage Patterns

4)
Simple template for TCServer, TC, App servers

HTTP Session management
Shared nothing persistence, Global session state
L v,

Set Cache in hibernate.cfg.xml

Hibernate L2 Cache plugin Support for query and entity caching

L
~ ™
Servers understand the memcached wire protocol
Memcached protocol Use any memcached client
-
<bean id="cacheManager"
Spring Cache Abstraction class="org.springframework.data.gemfire.support. GemfireCacheManager"

- J

© Copyright 2013 Pivotal. All rights reserved. 18

“Write thru” Distributed caching

) @ | ROW LOADER
s B
@)
DB WRITER |
—
] ()
Memory;-:l'ables
(1) @GO 11]
@)
DB WRITER |

Pre-load data into system
Lazily load cache misses

Configure LRU eviction or expiry for
large data

“Write thru” — participate in container
transaction

© Copyright 2013 Pivotal. All rights reserved.

Pivotal

19

Distributed caching with Async writes to DB

Buffer high write rate from DB

Updates Queue

(1

Writes can be enqueued in memory
redundantly on multiple nodes

E')enB Synchronizer

Or, also be persisted to disk on each
node

Queue

Updates

Batches can be conflated and written
to DB

DB Synchronizer

Pattern for “high ingest” into Data
Warehouse

© Copyright 2013 Pivotal. All rights reserved. 20

Pivotal.

As embedded, clustered Java database

Light weight, low cost, Just deploy a JAR or WAR into clustered App
easy to manage nOdeS

WEB APPLICATION
SERVER SERVER

Data can be sync’d with DB is partitioned or
replicated across the cluster

civen|| (BT Low cost and easy to manage
WEB APPLICATION
SERVER SERVER

© Copyright 2013 Pivotal. All rights reserved. 22

@ParititionedTable(TableName="trades")
public List AnalyzeTrades(@FilterKey Set<String> months, String portfolio) { ...

v
Java Stored procedure

© Copyright 2013 Pivotal. All rights reserved. 23

To make data visible across sites in real time

EEEE
LT
R
T

A . 1

DAISY CHAIN CLUSTERS mm— Distributed -

[T 1]

Z . . LT
Distributed

LT o
Asynchronous replication

between clusters for scale

L]
CT T -
1 Distributed
LT [T

A e

© Copyright 2013 Pivotal. All rights reserved. 24

e Data stored within GemFire in a “sliding window”

* GemkFire map-reduce style in-memory analytics can
be performed with data locality
— Ex: Violation of known trading patterns Alerts
* Benefit: Early-warning indicators can be identified <
faster than waiting for analysis on just Pivotal HD

* Benefit: Real-time analytics can better influence e
what kind of big data analytics need to be influence

performed v Micro-batches

= Pivotal HD
ools
Pivotal

© Copyright 2013 Pivotal. All rights reserved. 25

Analytics on HDFS

Analytic DB

Disparate input sources

SQL
Objects . Deep Scale SQL
JSON Stream processing l

RealTime/Operational }(—
(

DB Analytic DB }

!

(e®® ®8® - Do® oD
A

> T T\
Q \ ClEmem T8 -

Federated
Data Access

Pivotal

© Copyright 2013 Pivotal. All rights reserved. 27

saL Disparate input sources

Objects 5 Seale SOL
JSON [SpringXD] eep Iae Q
GemeFire f“““}\\\ [@ HAWQ }
; 1

GemFire HAWQ
PXF $

(s ®d® o oo® OO |
S
T

; IVE HBASE

- i CLOUD FOUNDRY Pivotal

28

Revenue Generation = Revenue Protection Network Efficiency

Network bandwidth
optimisation

Real-time Location based Customer experience
Mobile Advertising (B2B2C) management to reduce churn

Location Based Services Customers Sentiment
(B2C, B2B, B2B2C) analysis

Network signalling
maximisation

* Network optimization
— E.g. re-reroute call to another cell tower if congestion detected

* Location based Ads
— Match incoming event to Subscriber profile; If ‘Opt-in’ show location sensitive Ad
« Challenge: Too much streaming data

— Many subscribers, lots of 2G/3G/4G voice/data
— Network events: location events, CDRs, network issues

© Copyright 2013 Pivotal. All rights reserved. 29

Scalable Big Data Architecture for Real time Network analytics

Network sources Batch analytics —
Trending, Subscriber

location based
analytics, etc

Spring Framework

Stream ingestion T
- Filter (‘Opt'in,), normalize Business Rules Engine
- Dispatch real time events 3). Analyze
1) -- rbillions of events
sEVAN In-Memory Cluster
data

J, 2). Derived data Profiles, models

© Copyright 2013 Pivotal. All rights reserved. 30

Social Network

People Region
Partitioned

Person

Name: String
Description:String

© Copyright 2013 Pivotal. All rights reserved.

Post Region
Partitioned

Post

|d: Postld(name, date)
Text: String

Pivotal

32

Basic Save Code

public interface PersonRepository extends CrudRepository<Person, String> {

}

@Autowired
PersonRepository people;

Public static void main(String[] args) {
{

people.save(new Person(name));

}

© Copyright 2013 Pivotal. All rights reserved. 33

Configuration

<bean id="pdxSerializer"
class="com.gemstone.gemfire.pdx.ReflectionBasedAutoSerializer"™

<constructor-arg value="io.pivotal.happysocial. model.*"/>
</bean>

<gfe:cache pdx-serializer-ref="pdxSerializer"/>

<gfe:partitioned-region id="people" copies="1"/>

© Copyright 2013 Pivotal. All rights reserved.

34

public interface PostRepository extends

] _ Query Nested Objects
GemfireRepository<Post, Postld> {

e

@Query("select * from /posts where id.person=$1")
public Collection<Post> findPosts(String personName);

Collection<Post> posts = postRepository.findPosts(personName);

© Copyright 2013 Pivotal. All rights reserved. 35

Indexes

<gfe:index id="postAuthor" expression="id.person" from="/posts"/>

© Copyright 2013 Pivotal. All rights reserved. 36

Colocation

<gfe:partitioned-region id="posts" copies="1" colocated-with="people">
<gfe:partition-resolver ref="partitionResolver’/>
</gfe:partitioned-region>

Related Posts
Are colocated

Pivotal

© Copyright 2013 Pivotal. All rights reserved. 37

Functions

_ Behavior is sent to
Data is Colocated data (with filter)

String personName = pe
Collection<Post> posts =
String sentiment = senti
return new SentimentR

client.getSentiment(filter);

Pivotal

© Copyright 2013 Pivotal. All rights reserved. 38

Sample Function — Client Side

@Component
@OnRegion(region = "posts")
public interface FunctionClient {
public List<SentimentResult> getSentiment(@Filter Set<String> people);

}

© Copyright 2013 Pivotal. All rights reserved. 39

Sample Function — Server Side

@Autowired private PostRepository postRepository;
@Autowired SentimentAnalyzer sentimentAnalyzer;

@GemfireFunction

public SentimentResult getSentiment(@Filter Set<String>
personNames) {

String personName = personNames.iterator().next();
Collection<Post> posts = postRepository.findPosts(personName);
String sentiment = sentimentAnalyzer.analyze(posts);

return new SentimentResult(sentiment, personName);

}

© Copyright 2013 Pivotal. All rights reserved. 40

Parallel, Highly Available Queues

‘,

=3

Pivotal

Shared Nothing Persistence

Put k6->v6 ,

Modify

->v5

Create
k6->v6

k1

Operation Logs
with compaction

Create
k2->v2 k1

Create
k4->v4

© Copyright 2013 Pivotal. All rights reserved.

42

GemFire (Geode) 3.5-4.5X Faster Than Cassandra
for YCSB|[eoco00

800000

700000

600000

500000

400000

W Cassandra

W GemFire (Geode)

300000

operations per second

200000

100000 - J
=
£
D

o

Pivotal

© Copyright 2013 Pivotal. All rights reserved. 43

Horizontal Scaling for GemFire (Geode) Reads
With Consistent Latency and CPU

1200000 18
16
1000000 3
14 S
a.
(&]
800000 12 8
-g 3
g 10 '?;
5 600000 “&» “getsPerSe d
o £
2 8 = -“-getRespo Tim
&% 2 -server CPU
400000 6 =
o
&
4 3
200000 =
2
[J
o) o)
2 4 6 8 10

Server Hosts

e Scaled from 256 clients and 2 servers to 1280 clients and 10 servers

- Partitioned region with redundancy and 1K data size m

© Copyright 2013 Pivotal. All rights reserved. 44

] Southwestyp_ile

Heartone

Southwest.com | ==

Southwest Airlines Technology

Fueling Fast Data At Southwest Airlines :
Adopting Gemfire and Cross-Domain Integration

Integrated Data =

Better Decisions

It we had to ,
could we make better gate assignments?

Flight Times
Passenger Connections
l Crew Connections
e s o Connecting Bags
Gate Proximity
Aircraft Maintenance

\

NETWORK OPERATIONS CONTROL
(NOC)

From

ONE ACTIVE DB
NORMALIZED TABLES
ROW LOCKS
SQLJOINS

To

KEY, VALUE STORE
NO JOINS

CAP

DISTRIBUTED GRID
PARTITIONED DATA
BUCKETS

ACTIVE /ACTIVE

Tips: Adopting Gemfire
DATA PLACEMENT

Spread across multiple availability zones
Multiple data centers
Number of copies

CAP THEOREM (insights on choose 2)

Partitions = Slow or no ACKS
(usually not the network)

Consistency = Your use case wins
(you probably have several different ones)

Convergence = Some write wins

Tips: Adopting Gemfire

DATA LOCKING

“This lock does not mean what you think it means.”

TRANSACTIONS

Data on the same node only

PUT

BEWARE! Stale reads on concurrent puts!

Tips: Adopting Gemfire

PDX

Use it.
Don't rename enumerated options

SNAPSHOTS

In 7.0.x, you can't PDX IDs between caches

FILESYSTEMS
Shared less = Good!

Cross-Domain Integration

COMPLEX

DATA DOMAINS

CREW
FLIGHTS

EVENTS DAILY PASSENGERS
MAINTENANCE

AIRPOR

I"I .. A

LACUARDIA AIRPORT v ‘

TERMINAL A | TERMINAL B

Terminal B

> N
ving Travelers Travelers Airpor

American

@ TRAVEL ons (MDW and MKE)
- New York (LaGuardia), NY - LGA
el | ong Island/lslip, NY - ISP ® ‘ ®
Newark, NJ - EWR
® Round trig Baggage and optional fees ® Dollars
DAL LGA 09/29 09/30 1

Dallas (Love Field), TX- DAL New York (LaGuardia), NY - Depart Mon, Sep 29,2014 Return Tue, Sep 30, 2014 Adults
LGA

P de Advanced Search
Where we fy [Zf Map search Flexible dates rome co anced seare

I..l .. A

Points

0

Seniors

Search

OHS
on
)
Schedule Adapter
Application: Qps Suite
[
; %,
v \ %\
Schedule 1 2 (4
Command v
Airport)\ Service ri q«?o
i [
Linporing \)\ Schedule / <,
= ___"/ ~x Core domain /’ Access
ey G A
Problems & Alerts /] "-__,,»’\\ eneric
i i ~ “domain
upporting domain / _¢ N :
TS ==————— —- -~ \ -
\ S~
Passenger I Crew
Supporting A Supporting
domain e domain
N S
\ ~._ N s
Commodities r?q
Supporting Maintenance _;F >
domain Supporting (33' X,
ain
Commbdities
Adapter ‘ ‘ MX Adapter
[Ac] [Ac]
Q Bounded ™
Context
™y | subdomai
S/ ubdomain (o | o]
l:l Adapter -
Qpen Host
OHS Service
ACL Anti corruption A
layer
Published i
Language
O External System

Resources

Google:

Implementing Domain-Driven Design by Vaughn Vernon
Reactive Enterprise by Vaughn Vernon (published this summer)
CAP Theorem

The Dynamo Paper

Reactive Streams

Thank You!

Brian Dunlap
Technical Lead

bdunlap22@gmail.com

@brianwdunlap

Southwests

