DATASTAX"®

C# Driver 2.5 for Apache Cassandra
Documentation

${ds.localized.time}

© 2015 DataStax. All rights reserved.

Contents

Contents

ADOUL The G AIIVET ..ot e e e e e ettt e e e e e e e e e e e aaeeeeeennnnnes 3
L o 1 (= To (U1 PP PPPPPPPPPPPPRPP 4
The driver and itS dEPENUENCIES.uuiiiiiiiiiie et e e e e e e e e e s s e s aeaaeeaaeaeaanan 5
WItING YOUT fIrSt CHENT. ... e 6
Connecting t0 @ CaSSANAIA CIUSTEI.......coiiiiiiiiiie ittt e e e e e e e e e e b e e eeeaeeas 6

Using a session t0 execute CQL StAEMENTS.iiiiiii ittt 9

USING DOUNG STALEMIENTS. ...ttt e ettt e e e e e e e e e s e bbb e e e e e e e e e e e s 12

(0o [NV O o =T =T oY o = 14
ASYNChronoUS StAteMENT EXECULION.uuiiieiiiiit ettt et e e e 14
AULOMALIC TAIOVET ...ttt et e e e e e e e s ettt eeeeeaeeeeeeaansesbanneeeeaaaeens 15
CIUSTEE CONTIGUIBTION.eeeeiietee ettt e et e ettt e e e e bt e e e e s bb e e e e e st e e e e e annnes 16
TUNING POLICIES. ..ttt ettt ettt e e st e e e sttt e e s aanae e e s 16

[6f]] pT=Tot o] g 0] o110] 4 1S TP PRTTPP 17

CQL data tYPES 10 CHf LY PES. .eii ittt ittt ettt ettt e e et e e e e s e e e e et bt e e e e bbe e e e nees 19

D= o 10 o o oo TR PRSP PPPPPPPPN 20

D)V =T g T] 4] o0 1= o KT O PP P P PPPPR 20

(0] (=R oTo] 1 g oo] 0 [=T o | F TP PP PP PP PP TPPPPPI 20

Y E= o] o LT o oloTa] oo 1T o | O PP PPPPPPPPPPPRPPTPR 20

LINQ COMPONENT. ..ccteieiiiiititte ettt e ettt e e e e e e ettt e e e e e e e e s bbb e et e e e e e e e e e eaenen 23

F AN 1 2 N PSRRI 25

Y F=To] o1 gTe B S PSP UO PP PP 25

N\ oTo [Yoo}V =T o TP PP P PPPPPPPO 28
PAGING TESUILS. ...ttt e e e e bt e e e e a b bt e e e et b et e e e e anb b e e e e e nnnes 28
Parameterized queries (positional and Named)............ooiiiiiiiii e 29
Prepared STATEIMENTS.o ittt e et e e et e e e et e e e et e e e e annaes 30
ROULING QUETIES ..ttt ettt e ottt e e oottt e e e e e a b bt e e e ekt et e e e e anbb e e e e e e abbeeeeeeaae 30

F A QD ettt ettt ettt ettt ettt ettt ettt ettt ettt et ettt ettt 33
Should | create multiple 1Session instances in my client application?...........cccccceeeviiiiiiiiiiiieenee e, 33

How can | enable tracing iN the AriVEI?.t e e e e e e e e 33

What is the recommended number of queries that BATCH size should contain?..............ccccvvveee.. 33

What is the best way to retrieve multiple rows that contain large-sized blobs?..............cccccvvvieennn. 33

F N I =1 (=] =T o] = PO PPPPPPPUTTRPRTPP 34
USING TN TOCS .ttt e et e e e e e e e e e e e e e e e e e s s e e 35

About the C# driver

About the C# driver

Use this driver in production applications to pass CQL statements from the client to a cluster and retrieve,
manipulate, or remove data.

The C# driver is a modern, feature-rich and highly tunable Java client library for Apache Cassandra (1.2+)
and DataStax Enterprise (3.1+) using exclusively Cassandra’s binary protocol and Cassandra Query
Language v3.

Use this driver in production applications to pass CQL statements from the client to a cluster and
retrieve, manipulate, or remove data. Cassandra Query Language (CQL) is the primary language for
communicating with the Cassandra database. Documentation for CQL is available in CQL for Cassandra
2.x. DataStax also provides DataStax DevCenter, which is a free graphical tool for creating and running
CQL statements against Apache Cassandra and DataStax Enterprise. Other administrative tasks can be
accomplished using OpsCenter.

What's new in 2.5?
Here are the new and noteworthy features of the C# 2.5 driver:

* Routing API more user friendly
e Manual paging
¢ LINQ component

* support for lightweight transactions
» collection append and prepend
e CQL functions support (token, maxtimeuuid, mintimeuuid)
e ignore properties
e LINQ mapping of anonymous types
» fluent mapping configuration
« Mapper component: a lightweight object mapper for Apache Cassandra, originally developed by Luke
Tillman as separated project cqglpoco.

What's new in 2.1?
Here are the new and noteworthy features of the C# 2.1 driver:
e Cassandra 2.1 support

» User-defined types (UDT)
* Named parameters for statements
« When using the version 3 protocol, only one connection is opened per-host, and throughput is
improved due to reduced pooling overhead and lock contention.
e Tuples
* New features

* New reconnection policy Fi xedReconnecti onPol i cy

e The C# driver uses the most performant socket interface and (lock-free) asynchronous I/O, resulting
in a significant read / write performance improvement for highly concurrent scenarios.

Note: The C# 2.1 driver works with Apache Cassandra 2.1, 2.0, and 1.2 and DataStax Enterprise
4.5,4.0, 3.2, and 3.1.

/en/cql/3.1/cql/cql_intro_c.html
/en/cql/3.1/cql/cql_intro_c.html
/en/developer/devcenter/doc/devcenter/features.html
/en/latest-opsc
https://github.com/LukeTillman/cqlpoco

Architecture

Architecture

The C# Driver 2.5 for Apache Cassandra works exclusively with the Cassandra Query Language version 3
(CQL3) and Cassandra's new binary protocol which was introduced in Cassandra version 1.2.

The driver works with both Cassandra 1.2 and 2.0.
Core features

« Asynchronous: the driver uses the new CQL binary protocol asynchronous capabilities. Only a relatively
low number of connections per nodes needs to be maintained open to achieve good performance.

» Nodes discovery: the driver automatically discovers and uses all nodes of the Cassandra cluster,
including newly bootstrapped ones.

e Configurable load balancing: the driver allows for custom routing and load balancing of queries to
Cassandra nodes. Out of the box, round robin is provided with optional data-center awareness (only
nodes from the local data-center are queried (and have connections maintained to)) and optional token
awareness (that is, the ability to prefer a replica for the query as coordinator).

e Transparent failover: if Cassandra nodes fail or become unreachable, the driver automatically and
transparently tries other nodes and schedules reconnection to the dead nodes in the background.

« Cassandra trace handling: tracing can be set on a per-query basis and the driver provides a convenient
API to retrieve the trace.

» Convenient schema access: the driver exposes a Cassandra schema in a usable way.

« Configurable retry policy: a retry policy can be set to define a precise behavior to adopt on query
execution exceptions (for example, timeouts, unavailability). This avoids polluting client code with retry-
related code.

e Tunability: the default behavior of the driver can be changed or fine tuned by using tuning policies and
connection options.

Architectural overview

The driver architecture is a layered one. At the bottom lies the driver core. This core, located in
Cassandr a. dl | assembly, handles everything related to the connections to a Cassandra cluster (for
example, connection pool, discovering new nodes, etc.) and exposes a simple, relatively low-level API on
top of which a higher level layer can be built.

Queries can be executed synchronously or asynchronously, prepared statements are supported, and LINQ
can be used to embed queries directly into C# code.

The driver contains four components that you can choose from to determine how your client interacts with
Cassandra nodes.

e Core

* Mapper

¢« LINQ

e ADO.NET

Architecture

The driver and its dependencies
The C# driver only supports the Cassandra Binary Protocol and CQL3

Cassandra binary protocol

The driver uses the binary protocol that was introduced in Cassandra 1.2. It only works with a version of
Cassandra greater than or equal to 1.2. Furthermore, the binary protocol server is not started with the
default configuration file in Cassandra 1.2. You must edit the cassandr a. yani file for each node:

start_native_transport: true

Then restart the node.

Cassandra compatibility

The 2.0 version of the driver handles a single version of the Cassandra native protocol for the sake of
simplicity. Cassandra does the multiple version handling. This makes it possible to do a rolling upgrade of
a Cassandra cluster from 1.2 to 2.0 and then to upgrade the drivers in the application layer from 1.0 to 2.0.
Because the application code needs to be changed anyway to leverage the new features of Cassandra
2.0, this small constraint appear to be fair.

C# driver 1.0.x C# driver 2.0.x
Cassandra 1.2.x Compatible Compatible
Cassandra 2.0.x Compatible for Cassandra 1.0 Compatible
API and commands

If you try to use any Cassandra 2.0 features with Cassandra 1.2, the driver throws a
Not Support edExcepti on.

Installing the driver with NuGet package manager

You install the latest version of the driver from the NuGet Gallery:

PM> | nstal | - Package Cassandr aCShar pDri ver

Writing your first client

Writing your first client

This section walks you through a small sample client application that uses the C# driver to connect to a
Cassandra cluster, print out some metadata about the cluster, execute some queries, and print out the
results.

Connecting to a Cassandra cluster

The C# driver provides a Cluster class which is your client application's entry point for connecting to a
Cassandra cluster and retrieving metadata.

Before you begin

This tutorial assumes you have the following software installed, configured, and that you have familiarized

yourself with them:

Apache Cassandra

ccm (optional)

Microsoft Visual Studio

Package Manager Console for Visual Studio
DataStax C# driver for Apache Cassandra

About this task

Using a Cluster object, the client connects to a node in your cluster and then retrieves metadata about the

cluster and prints it out.

Procedure

1.

In the Visual Studio IDE, create a console application project.
In the New Project dialog, use the following data:

* template: Installed > Visual C# > Console Application

e .NET framework: 4.5

¢ Name: CassandraApplication

e Location: <your - pr oj ect s-di rectory>

* Solution: Create new solution

e Solution name: CassandraApplication

In the Package Manager Console window install the C# driver.

a) Select Tools > Library Package Manager > Package Manager Console.
The Package Manager Console opens at the bottom of the IDE.

b) Type the following to install the C# driver:
Install-Package CassandraCSharpDriver

The C# driver is installed.

Create a new C# class, SimpleCassandraApplication.SimpleClient.

a) Right-click on the SimpleCassandraApplication node in the Solution Explorer and select Add >
New Item.

b) Inthe Add New Item dialog, add the following for your new class:

¢ Select Installed > Visual C# Iltems > Class.
¢ Name: SimpleClient.cs
c) Select Add.

http://cassandra.apache.org/
https://github.com/pcmanus/ccm
http://www.microsoft.com/visualstudio/eng/downloads
http://docs.nuget.org/docs/start-here/using-the-package-manager-console
https://nuget.org/packages/CassandraCSharpDriver/

Writing your first client

4. Create a new C# class, Cassandr aAppl i cati on. Si npl eCl i ent .

a) Add a using directive that references the Cassandra namespace.
b) Add a read-only property, Cl ust er, to hold a Cluster reference.

public Cluster Cluster { get; private set; }

¢) Add an instance method member, Connect , to your new class.
public void Connect(String node) {}

The Connect method:

e adds a contact point (node IP address) using the Bui | der class
e builds a cluster instance
* retrieves metadata from the cluster:

* the name of the cluster
« the datacenter, host name or IP address, and rack for each of the nodes in the cluster

public void Connect(String node)

Cluster = Cluster. Buil der()
. AddCont act Poi nt (node)
.Bui I d();
Consol e. WitelLine("Connected to cluster: " +
Cl uster. Met adat a. C ust er Nanme. ToString());
foreach (var host in Custer. Mtadata. All Hosts())

Console. WitelLine("Data Center: " + host.Datacenter + ", " +
"Host: " + host.Address + ", " +
"Rack: " + host. Rack);
}
}
d) Add an instance method member, Cl ose, to shut down the cluster instance once you are finished
with it.

public void C ose()
{

}

e) Inthe CassandraApplication.Program class Mai n method instantiate a Si npl eC i ent object, call
Connect on it, and then Cl ose.

Cl ust er. Shut down() ;

static void Main(String[] args)

SinpleCient client = new Sinpledient();
client.Connect("127.0.0.1");

Consol e. ReadKey(); // pause the console before exiting
client.C ose();

}

Code listing
The complete code listing illustrates:

e connecting to a cluster

Writing your first client

e retrieving metadata and printing it out
» closing the connection to the cluster

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Li nq;

usi ng System Text;

usi ng System Threadi ng. Tasks;

usi ng Cassandr a;
nanespace CassandraExanpl es

public class Sinpledient
{

public Custer Cluster { get; private set; }
public void Connect(String node)

cluster = Custer.Builder()
. AddCont act Poi nt (node)
.Bui ld();
Consol e. WiteLine("Connected to cluster: " +
Cl ust er. Met adat a. Cl ust er Nane. ToString());
foreach (var host in Custer. Metadata. All Hosts())

Consol e. WitelLine("Data Center: " + host.Datacenter + ", "
"Host: " + host.Address + ", " +
"Rack: " + host. Rack);

}

}

public void d ose()

{
C ust er. Shut down() ;

}

public static void Main(String[] args)

{
Sinmpledient client = new Sinpledient();
client.Connect("127.0.0.1");
Consol e. ReadKey(); // pause the consol e before exiting
client.C ose();

}

}
}
When run the client program prints out this metadata on the cluster's constituent nodes in the console
pane:

Connected to cluster: xerxes

Dat at acenter: datacenterl; Host: /127.0.0.1; Rack: rackl
Dat at acenter: datacenterl; Host: /127.0.0.2; Rack: rackl
Dat at acent er: datacenterl; Host: /127.0.0.3; Rack: rackl

Press any key to quit your application.

Writing your first client

Using a session to execute CQL statements

Once you have connected to a Cassandra cluster using a cluster object, you retrieve a session, which
allows you to execute CQL statements to read and write data.

Before you begin
This tutorial uses a CQL3 schema which is described in a post on the DataStax developer blog. Reading
that post, could help with some of the new CQL3 concepts used here.

About this task

Getting metadata for the cluster is good, but you also want to be able to read and write data to the cluster.
The C# driver lets you execute CQL statements using a session instance that you retrieve from the Cluster
object. You will add code to your client for:

creating tables

inserting data into those tables
querying the tables

printing the results

Procedure

1. Modify your Si npl eCl i ent class.

a) Add an | Sessi on read-only property.

public | Session Session { get; private set; }

b) Get a session from your cluster and store the reference to it.
Add the following line to the end of the Connect method:

Session = Cluster. Connect ();

You can execute statements by calling the Execut e method on your session object. The session
maintains multiple connections to the cluster nodes, provides policies to choose which node to use for
each query (round-robin on all nodes of the cluster by default), and handles retries for failed queries
when it makes sense.

Session instances are thread-safe and usually a single instance is all you need per application.
However, a given session can only be set to one keyspace at a time, so one instance per keyspace
is necessary. Your application typically only needs a single cluster object, unless you're dealing with
multiple physical clusters.

Add an instance method, Cr eat eSchenm, to the Si npl eC i ent class implementation.
public void CreateSchema() { }

Add the code to create a new schema.
a) Execute a statement that creates a new keyspace.

Add to the Cr eat eSchema method:

Sessi on. Execut e(" CREATE KEYSPACE sinplex WTH replication " +
"= {'class':'SinpleStrategy', 'replication_factor':3};");

In this example, you create a new keyspace, simplex.
b) Execute statements to create two new tables, songs and playlists.

http://www.datastax.com/dev/blog/cql3-for-cassandra-experts

Writing your first client

Add to the Cr eat eSchenma method:

Sessi on. Execut g(
"CREATE TABLE si npl ex. songs (" +
"id uuid PRI MARY KEY," +
"title text," +
"al bumtext," +
"artist text," +
"tags set<text> " +
"data bl ob" +
_ "))
Sessi on. Execut e
"CREATE TABLE si npl ex. playlists (" +
"idwuuid," +
"title text," +
"al bumtext, " +
"artist text," +
"song_id uuid," +
"PRI MARY KEY (id, title, album artist)" +
"))

4. Add a virtual instance method, LoadDat a, to the Si npl eCi ent class implementation.
public virtual void LoadData() { }

Declare the LoadDat a method to be virtual because it will be overridden in the
BoundSt at enment Cl i ent later in this tutorial.

5. Add the code to insert data into the new schema.

Sessi on. Execut g(
"I NSERT | NTO si npl ex.songs (id, title, album artist, tags) " +

"VALUES (" +
"756716f 7- 2e54- 4715- 9f 00- 91dcbeabef 50, " +
"'La Petite Tonkinoise'," +
"' Bye Bye Blackbird ," +
"' Joséphi ne Baker'," +
"{'jazz', '2013'})" +
)

Sessi on. Execut e
"I NSERT | NTO sinpl ex.playlists (id, song_id, title, album artist) "
+
"VALUES (" +
"2cc9cch7-6221-4ccb-8387-f 22b6alb354d, " +
"756716f 7- 2e54- 4715- 9f 00- 91dcbeabef 50, " +
"'La Petite Tonkinoise'," +
"'Bye Bye Blackbird ," +
"' Joséphi ne Baker'" +

"))

6. Inthe Cassandr aAppl i cati on. Progr amclass Mai n method, add calls to the Cr eat eSchena and
LoadDat a methods (after the Connect method).

client. CreateSchema();
client. LoadbData();

7. Tothe Si npl eCl i ent class), add an instance method, Quer ySchens, that executes a SELECT
statement on the tables and then prints out the results.

10

Writing your first client

a) Add a virtual instance method, Quer ySchenm, to the Si npl eCi ent class implementation.
public virtual void QuerySchema() { }

Declare the Quer ySchenma method to be virtual because it will be overridden in the

BoundSt at enent Cl i ent and Asynchr onousd i ent classes later in this document.
b) Add code to execute the query.

Query the playlists table for one of the two records.

RowSet results = _session. Execute("SELECT * FROM pl aylists " +
"WHERE id = 2cc9cch7-6221-4cch-8387-f22b6alb354d;");

The Execut e method returns a RowSet object that holds rows returned by the SELECT statement.
c) Add code to iterate over the rows and print them out.

Console. WiteLine(String. Format ("{0, -30}\t{1, -20}\t{2, -20}\t{3,
-30}",

"title", "al buni, "artist", "tags"));
Console.WiteLine("-------------------------------

foreach (Row row in results.GetRovvé())
Console. WitelLine(String. Format ("{0, -30}\t{1, -20}\t{2, -20}\t{3}",
row. Get Val ue<String>("title"), row GetValue<String>("al buni),

row. Get Val ue<String>("artist"),
row. Get Val ue<Li st <String>>("tags").ToString()));

}

8. Add a new instance method, Dr opSchema method, that drops a keyspace from the schema.

public void DropSchenma()

{
Sessi on. Execute ("DROP KEYSPACE " + keyspace);

Console. WitelLine ("Finished dropping " + keyspace +

keyspace.");

}

9. Add a new instance method, Cl ose that closes the cluster and disposes of the session.

public void C ose()

Cl ust er. Shut down() ;
Sessi on. Di spose();

}

10.To the Cassandr aAppl i cat i on. Progr amclass Mai n method, add calls to the new Quer ySchemsg,
Dr opSchenma, and Cl ose methods.

client. QuerySchena();

11

Writing your first client

Using bound statements

The previous tutorial used simple CQL statements to read and write data, but you can also use prepared
statements, which only need to be parsed once by the cluster, and then bind values to the variables and
execute the bound statement you read or write data to a cluster.

About this task

In the previous tutorial, you added a LoadDat a method which creates a new statement for each INSERT,
but you may also use prepared statements and bind new values to the columns each time before
execution. Doing this increases performance, especially for repeated queries. You add code to your client
for:

e creating a prepared statement
e creating a bound statement from the prepared statement and binding values to its variables
e executing the bound statement to insert data

Procedure

1. Create a new class, BoundSt at ement sCl i ent which extends Si npl eCl i ent, to the
Cassandr aAppl i cat i on solution.

2. Add a using directive for Cassandr a.

usi ng Cassandr a;

3. Add a new method, Pr epar eSt at enent s, and implement it.

a) Add two properties, | nsert SongPr epar edSt at enent and
I nsert Pl ayl i st Prepar edSt at ement , to hold references to the two prepared statements you
will use in the LoadDat a method.

private PreparedStatenent |nsertSongPreparedStatenent;
private PreparedStatenent |nsertPlaylistPreparedStatenent;

b) Inthe Pr epar eSt at enent s method body add the following code:

I nsert SongPr epar edSt at ement = Sessi on. Prepar e(
"I NSERT | NTO si npl ex. songs " +
"(id, title, album artist, tags)
"VALUES (?, 2, ?, 2, ?2);");

I nsert Pl ayl i st Prepar edSt at ement = Sessi on. Prepar e(
"I NSERT | NTO si npl ex. playlists " +
"(id, song_id, title, album artist) " +
"VALUES (?, 2, ?2, 2, ?2);");

(L

Note: You only need to prepare a statement once per session.
4. Add a new method, LoadDat a, and implement it.

public override void LoadData() { }

5. Add a collection to hold the tags which will be bound to the prepared statement.

HashSet <String> tags = new HashSet <String>();
tags. Add("jazz");
tags. Add("2013");

12

Writing your first client

6. Add code to bind values to the prepared statement's variables and execute it.
You create a bound statement by calling its constructor and passing in the prepared statement. Use the
Bi nd method to bind values and execute the bound statement on the your session..

BoundSt at ement boundSt at ement = | nsert SongPr epar edSt at enent . Bi nd(

new Qui d("756716f 7- 2e54- 4715- 9f 00- 91dcbeabcf 50") ,
"La Petite Tonkinoise'",

"Bye Bye Bl ackbird' ",

"Joséphi ne Baker",

tags);

Sessi on. Execut e(boundSt at ement) ;

7. Add code to create a new bound statement for inserting data into the si npl ex. pl ayl i st s table.

public override void LoadData()

{

}

HashSet <String> tags = new HashSet <String>();
tags. Add("jazz");
tags. Add("2013");
BoundSt at enent boundSt at ement = | nsert SongPr epar edSt at enent . Bi nd(
new Cui d("756716f 7- 2e54- 4715- 9f 00- 91dcbeabcf 50"),
"La Petite Tonkinoise'",
"Bye Bye Bl ackbird' ",
"Joséphi ne Baker",

tags);
Sessi on. Execut e(boundSt at enment) ;
boundSt at ement = I nsert Pl ayli st PreparedSt at enent . Bi nd(

new Qui d("2cc9cch7-6221-4cch-8387-f22b6alb354d"),
new Qui d("756716f 7- 2e54- 4715- 9f 00- 91dcbeabcf 50") ,
"La Petite Tonkinoise",
"Bye Bye Bl ackbird",
"Joséphi ne Baker");

Sessi on. Execut e(boundSt at enment) ;

8. In the Mai n method of the Cassandr aAppl i cati on. Pr ogr amclass, replace the line which
instantiates a client from the Si npl eCl i ent class to the BoundSt at enent sCl i ent and add a call to
the Pr epar eSt at enent s method after you have created the schema.

static void Main(String[] args)

{

BoundSt at enent sClient client = new BoundStatenmentsCient();
client.Connect("127.0.0.1");

client.CreateSchema();

client. PrepareStatenents();

client. LoadData();

client.QerySchema();

Consol e. ReadKey() ;

client.DropSchema("si npl ex");

client.d ose();

client.C ose();

13

C# driver reference

C# driver reference

Reference for the C# driver.

Asynchronous statement execution

You can execute statements on a session objects in two different ways. Calling Execut e blocks the calling
thread until the statement finishes executing, but a session also allows for asynchronous and non-blocking
I/0O by calling the Execut eAsync method.

The 1.0 version of the driver used a different pattern for asynchronous execution of CQL statements: by
calling Begi nExecut e and EndExecut e methods. Now the driver has added an Execut eAsync method
to its API. This uses the .NET 4.5 framework TAP (Task-based Asynchronous Pattern).

Calling Execut eAsync returns a Task<RowSet > object immediately without blocking the calling method.
In the example code below, a lambda expression is passed to the Cont i nuesW t h method. When the
CQL statement has finished execution, the anonymous Func is called and the RowSet is printed out.

Example code

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Li ng;

usi ng System Text;

usi ng System Thr eadi ng. Tasks;

usi ng Cassandr a;
nanespace CassandraApplication
{
cl ass AsynchronousClient : Sinpledient
public AsynchronousCient() { }
public override void QuerySchenma()
Statenment statenment = new Sinpl eStatenent (" SELECT * FROM
si mpl ex. songs; ") ;
var task = Session. Execut eAsync(statenent);
task. Conti nueWth((asyncTask) =>

Consol e. WiteLine(String. Format ("{0, -30}\t{1, -20}\t{2,
-203\t {3, -30}",

"title", "al bunt, "artist", "tags"));
Console. WiteLine("---------------““-““------
T Femmemeeeeaeeieaas
Homooo e ")

foreach (var row in asyncTask. Result)

Consol e. WitelLine(String. Format ("{0, -30}\t{1, -20}\t{2,
-203\t{3}",
row. Get Val ue<String>("title"),
row. Get Val ue<String>("al buni'),
row. Get Val ue<String>("artist"),
Prettify(row GetVal ue<List<String>>("tags")

)))s
}

14

http://msdn.microsoft.com/en-us/library/hh873175(v=vs.110).aspx

C# driver reference

1) _
task. Vit ();

internal String Prettify(lEnunmerabl e<String> collection)

{
StringBuilder result = new StringBuilder("[");

foreach (var itemin collection)

resul t. Append(iten;
resul t. Append(" ");

}
resul t. Append("]1");
return result.ToString();

Automatic failover

Description

If a Cassandra node fails or becomes unreachable, the C# driver automatically and transparently tries
other nodes in the cluster and schedules reconnections to the dead nodes in the background.

How the driver handles failover is determined by which retry and reconnection policies are used when
building a cluster object.

Examples

This code illustrates building a cluster instance with a retry policy which sometimes retries with a lower
consistency level than the one specified for the query.

public Roll YourOmC uster() {
Cluster cluster = Custer.Builder()
. AddCont act Poi nt s("127.0.0.1", "127.0.0.2")
. Wt hRetryPol i cy(Downgr adi ngConsi st encyRet ryPol i cy. | NSTANCE)
. WthReconnecti onPol i cy(new Const ant Reconnecti onPol i cy(100L))
.Bui ld();
session = cluster. Connect();

Binary protocol frame change: 2-byte stream id
Starting with Cassandra 2.1, the binary protocol (version 3) the frame stream id is two bytes, allowing

for up to 32K requests without waiting for a response. This is the same level of concurrency that was
previously possible using multiple connections to the same host.

15

https://git-wip-us.apache.org/repos/asf?p=cassandra.git;a=blob_plain;f=doc/native_protocol_v3.spec

C# driver reference

Cluster configuration
You can modify the tuning policies and connection options for a cluster as you build it.

The configuration of a cluster cannot be changed after it has been built. There are some miscellaneous
properties (such as whether metrics are enabled, contact points, and which authentication information
provider to use when connecting to a Cassandra cluster).

Tuning policies
Tuning policies determine load balancing, retrying queries, and reconnecting to a node.

Load balancing policy
The load balancing policy determines which node to execute a query on.

Description
The load balancing policy interface consists of three methods:

e« Host Di stance Di stance(Host host) : determines the distance to the specified host. The values
are HostDistance.IGNORED, LOCAL, and REMOTE.

« void Initialize(Cd uster cluster):initializes the policy. The driver calls this method only once

and before any other method calls are made.

e | Enuner abl e<Host > NewQuer yPl an() : returns the hosts to use for a query. Each new query calls

this method.

The policy also implements the Host.StateListener interface which is for tracking node events (that is add,

down, remove, and up).

By default, the driver uses a round robin load balancing policy when building a cluster object. There is also

a token-aware policy which allows the ability to prefer the replica for a query as coordinator. The driver
includes these three policy classes:

e DCAwar eRoundRobi nPol i cy
e RoundRobi nPol i cy
e TokenAwar ePol i cy

Reconnection policy
The reconnection policy determines how often a reconnection to a dead node is attempted.

Description
The reconnection policy consists of one method:

e | Reconnecti onSchedul e NewSchedul e() : creates a new schedule to use in reconnection
attempts.

By default, the driver uses an exponential reconnection policy. The driver includes these three policy
classes:

e Const ant Reconnecti onPol i cy
e« Exponenti al Reconnecti onPolicy
e Fi xedReconnecti onPol i cy

The new Fi xedReconnect i onPol i cy allows you to specify custom delays for each reconnection

attempt. This policy is specially suitable for small clusters where you want to have fine-grained control over

the reconnection delays.

FixedReconnectionPolicy sample

16

C# driver reference

/1 When building a cluster, set the reconnection policy to
/1 Don't wait to reconnect the first attenpt (0 ns)
/1 WAit 5 seconds for the seconds reconnection attenpt (5000 ns)
/1 WAit 2 minutes for the third (2 * 60000 ns)
/1 Wait 1 hour for the follow ng attenpts (60 * 60000 ns)
Cl uster. Buil der ()
. Wt hReconnecti onPol i cy(new Fi xedReconnecti onPol i cy(0, 5000, 2 * 60000,
60 * 60000)

Retry policy
The retry policy determines a default behavior to adopt when a request either times out or if a node is
unavailable.

Description

A client may send requests to any node in a cluster whether or not it is a replica of the data being
queried. This node is placed into the coordinator role temporarily. Which node is the coordinator is
determined by the load balancing policy for the cluster. The coordinator is responsible for routing the
request to the appropriate replicas. If a coordinator fails during a request, the driver connects to a
different node and retries the request. If the coordinator knows before a request that a replica is down,
it can throw an Unavai | abl eExcepti on, but if the replica fails after the request is made, it throws
a Ti meout Except i on. Of course, this all depends on the consistency level set for the query before
executing it.

A retry policy centralizes the handling of query retries, minimizing the need for catching and handling of
exceptions in your business code.

The retry policy interface consists of three methods:

e RetryDeci sion OnReadTi neout (Query query, ConsistencylLevel cl, int
requi redResponses, int recei vedResponses, bool ean dataRetrieved, int
nbRet ry)

e RetryDecision OnUnavail abl e(Query query, ConsistencylLevel cl, int
requiredReplica, int aliveReplica, int nbRetry)

e RetryDecision OnWiteTi meout (Query query, ConsistencylLevel cl, WiteType
witeType, int requiredAcks, int receivedAcks, int nbRetry)

By default, the driver uses a default retry policy. The driver includes these four policy classes:

e DefaultRetryPolicy

» Downgr adi ngConsi st encyRet ryPol i cy
e Fal |l throughRetryPolicy

e Loggi ngRetryPol i cy

Connection options
There are three classes the driver uses to configure node connections.

Protocol options

Protocol options configure the port on which to connect to a Cassandra node and which type of
compression to use.

Description

Table 1: Protocol options

Option Description Default

Port The port to connect to a 9042
Cassandra node on.

17

C# driver reference

Option

Description

Default

Compression

What kind of compression to use
when sending data to a node:
either no compression or snappy.
Snappy compression is optimized
for high speeds and reasonable
compression.

CompressionType.NoCompressiot]

Pooling options

The C# driver uses connections asynchronously, so multiple requests can be submitted on the same

connection at the same time.

Description

The driver only needs to maintain a relatively small number of connections to each Cassandra host. These
options allow you to control how many connections are kept exactly. The defaults should be fine for most

applications.

Table 2: Connection pooling options

Option

Description

Default value

CoreConnectionsPerHost

The core number of connections
per host.

2 for HostDistance.LOCAL, 1 for
HostDistance.REMOTE

MaxConnectionPerHost

The maximum number of
connections per host.

8 for HostDistance.LOCAL, 2 for
HostDistance.REMOTE

MaxSimultaneousRequestsPerCorj

rdationimbsholdsimultaneous
requests on all connections
to an host after which more
connections are created.

128

MinSimultaneousRequestsPerCon

hebeomdmdsrodd simultaneous
requests on a connection below
which connections in excess are
reclaimed.

25

Socket options

Socket options configure the low-level sockets used to connect to nodes.

Description

These properties represent low-level socket options.

Table 3: Pooling options

Option

Description

ConnectTimeoutMillis

The connect timeout in milliseconds for the
underlying I/0O channel.

KeepAlive

The amount of time before you send your peer a
keepalive probe packet with no data in it and the
ACK flag turned on.

ReceiveBufferSize

A hint on the size of the buffer used to receive data.

https://code.google.com/p/snappy/

C# driver reference

Option Description

ReuseAddress Whether to allow the same port to be bound to
multiple times.

SendBufferSize A hint on the size of the buffer used to send data.

SoLinger When specified, disables the immediate return from
a call to close() on a TCP socket.

TcpNoDelay Disables Nagle's algorithm on the underlying
socket.

CQL data types to C# types

A summary of the mapping between CQL data types and C# data types is provided.

Description

When retrieving the value of a column from a Row object, you use a getter based on the type of the

column.

Table 4: C# classes to CQL data types

CQL3 data type C# type

ascii Encoding.ASCII string
bigint long

blob byte[]

boolean bool

counter long

custom Encoding.UTF8 string
decimal float

double double

float float

inet IPEndPoint

int int

list IEnumerable<T>

map IDictionary<K, V>

set [Enumerable<T>

text Encoding.UTF8 string
timestamp System.DateTimeOffset
timeuuid System.Guid

uuid System.Guid

varchar Encoding.UTF8 string

19

C# driver reference

CQL3 data type C# type
varint System.Numerics.Biginteger (.NET 4.0), byte[]
(.NET 3.5)
Debugging

You have several options to help in debugging your application.
On the client side, you can use your IDE's debugging feature.

If you are using DataStax Enterprise, you can store the log4j messages into a Cassandra cluster.

Driver components

The driver contains four different components that you can choose to interact with Cassandra nodes.

Core component

The core component is responsible for maintaining a pool of connections to the cluster and executes the
statements based on client configuration.

The core component is responsible for maintaining a pool of connections to the cluster and executes the
statements based on client configuration.

Even though the core component allows low-level fine tuning, (for example, load-balancing policies to
determine which node to use for each query), you interact using high-level objects like the Sessi on that
represents a pool of connections to the Cassandra cluster.

The other three components use the core component to execute statements and to handle the encoding
and decoding of data.

The core component allows for fine tuning for performance, provides both sync and async APIs, and is
used by all the others driver components.

Example

var cluster = Cluster. Builder()
. AddCont act Poi nt s("host 1", "host2", "host3")
. Bui ld();
var session = cluster. Connect ("sanpl e_keyspace");
var rs = session. Execut e("SELECT * FROM sanpl e_tabl e");
foreach (var rowin rs)
{
var val ue = row. Cet Val ue<i nt>("sanpl e_i nt _col um");
//do sonmething with the val ue

Mapper component

20

The Mapper component handles the mapping of CQL table columns to fields in your classes.
The Mapper component handles the mapping of CQL table columns to fields in your classes.

The Mapper component (previously known as cqlpoco) is a lightweight object mapper for Apache
Cassandra. It lets you write queries with CQL, while it takes care of mapping rows returned from
Cassandra to your classes. It was inspired by PetaPoco, NPoco, Dapper.NET and the cglengine project.

To use the Mapper:

http://www.datastax.com/docs/datastax_enterprise2.0/logging/log4j_logging
https://github.com/LukeTillman/cqlpoco
https://github.com/toptensoftware/PetaPoco
https://github.com/schotime/NPoco
https://github.com/StackExchange/dapper-dot-net
https://github.com/cqlengine/cqlengine

C# driver reference

1. Add the following usi ng statement to your class:

usi ng Cassandr a. Mappi ng;

2. Retrieve an | Sessi on instance in the usual way and reuse that session within all the classes in your
client application.

3. Instantiate a Mapper object using its constructor:
| Mapper mapper = new Mapper (session);
New Mapper instances can be created each time they are needed, as short-lived instances, as long as you

are reusing the same Session instance.

The Mapper works by mapping the column names in your CQL statement to the property names on your
classes.

For example:

public class User

public Guid Userld { get; set; }
public string Nanme { get; set; }
}

/Il Get a list of users from Cassandra

| Enurnrer abl e<User > users = napper. Fet ch<User >(" SELECT userid, nanme FROM
users");

| Enuner abl e<User > users = napper. Fet ch<User >(" SELECT * FROM users WHERE nane
= ?", soneNane);

Simple scenarios such as this are possible without doing any further mapping configuration. When using
parameters, use query markers (?) instead of hardcoded stringified values, this improves serialization
performance and lower memory consumption.

The Mapper will create new instances of your classes using the parameterless constructor.

Configuring mappings

In many scenarios, you need more control over how your class maps to a CQL table. You have two ways
of configuring the Mapper:

« decorate your classes with attributes
« define mappings in code using the fluent interface

An example using the fluent interface:

Mappi ngConfi gur ati on. A obal . Defi ne(
new Map<User >()
. Tabl eNane("users")
.PartitionKey(u => u. Userld)
.Colum(u => u.Userld, cm=>cmWthNane("id")));

You can also create a class to group all your mapping definitions.

public class MyMappi ngs : Mappi ngs

public MyMappi ngs()

/1 Define mappings in the constructor of your class

21

C# driver reference

/1 that inherits from Mappi ngs

For <User >()
. Tabl eNane("users")
.PartitionKey(u => u. Userld)
.Colum(u => u.Userld, cm=>cmWthNane("id")));

For <Comment >()
. Tabl eNane(" comments") ;

}
}

Then, you can assign the mappings class in your configuration.

Mappi ngConfi gurati on. A obal . Defi ne<MyMappi ngs>();

Mapper APl example

A simple query example is great, but the Mapper has many other methods for doing things like Inserts,
Updates, Deletes, selecting a single record and more. And all methods have async counterparts. Here's a
quick sampling.

/1 Al query nethods (Fetch, Single, First, etc.) will auto generate

/'l the SELECT and FROM cl auses if not specified.

| Enurrer abl e<User > users = napper. Fet ch<User>();

| Enurrer abl e<User > users mapper . Fet ch<User >(" FROM users WHERE nane = ?",
sonmeNane) ;

| Enuner abl e<User > users = napper. Fet ch<User >("WHERE nane = ?", soneNane);

/1 Single and SingleODefault for getting a single record
var user = nmapper. Singl e<User>("WHERE userid = ?", userld);
var user = mapper. Singl eOr Def aul t <User >("WHERE userid = ?", userld);

/'l First and FirstOrDefault for getting first record

var user = nmapper. First<User>("SELECT * FROM users");

var user = mapper. First O Defaul t<User>("SELECT * FROM users");

/1 Al query nethods al so support "flattening"” to just the colum's val ue
type when

/'l selecting a single colum

Qui d userld = mapper. First<Qui d>("SELECT userid FROM users");

| Enuner abl e<stri ng> names = mapper. Fet ch<string>("SELECT nane FROM users");

/'l Insert a POCO var newUser = new User { Userld = Guid. New&uid(), Name =
"SomeNewUser " };
mapper . | nsert (newldser) ;

/'l Update with POCO soneUser.Nane = "A new nane!";
mapper . Updat e(someUser) ;

/'l Update with CQL (will prepend table nane to CQ)
mapper . Updat e<User>("SET nane = ? WHERE id = ?", soneNewNane, userld);

/'l Delete with POCO
mapper . Del et e(sonmeUser) ;

/'l Delete with CQL (will prepend table nane to CQ)
mapper . Del et e<User>("WHERE id = ?", userld);

22

C# driver reference

LINQ component

The LINQ component of the driver is an implementation of LINQ | Quer yPr ovi der and | Quer yabl e<T>
interfaces that allows you to write CQL queries in LINQ and read the results using your object model.

The LINQ component of the driver is an implementation of LINQ | Quer yPr ovi der and | Quer yabl e<T>
interfaces that allows you to write CQL queries in LINQ and read the results using your object model.

When you execute a LINQ statement, the component translates language-integrated queries into CQL
and sends them to the cluster for execution. When the cluster returns the results, the LINQ component
translates them back into objects that you can work with in C#.

1. Add a usi ng statement to your class:

usi ng Cassandra. Dat a. Li nq;

2. Retrieve an | Sessi on instance in the usual way and reuse that session within all the classes in your
client application.

3. You can get an | Quer yabl e instance of using the Tabl e constructor:
var users = new Tabl e<User >(sessi on);
New Tabl e<T> (1 Queryabl e) instances can be created each time they are needed, as short-lived

instances, as long as you are reusing the same Session instance.

For example:

public class User

public Guid Userld { get; set; }
public string Name { get; set; }
public string Goup { get; set; }

/1l Get a list of users from Cassandra using a Ling query
| Enurnrer abl e<User > admi nUsers =
(fromuser in users where user.Goup == "adm n" sel ect
user) . Execute();

You can also wite your queries using |anbda syntax

| Enuner abl e<User > adm nUsers = users
.Where(u => u. Goup == "admi n")
. Execut e();

The LINQ component creates new instances of your classes using its parameterless constructor.

Configuring mappings

In many scenarios, you need more control over how your class maps to a CQL table. You have two ways
of configuring the LINQ:

e decorate your classes with attributes
e define mappings in code using the fluent interface

An example using the fluent interface:

Mappi ngConfi gurati on. d obal . Defi ne(
new Map<User >()
. Tabl eNane("users")
.PartitionKey(u => u. Userld)

23

C# driver reference

.Colum(u => u.Userld, cm=>cmWthName("id")));

You can also create a class to group all your mapping definitions.

public class MyMappi ngs : Mappi ngs
public MyMappi ngs()

{
/1 Define mappings in the constructor of your class
/1 that inherits from Mappings
For <User >()
. Tabl eNane("users")
.PartitionKey(u => u. Userld)
.Colum(u => u.Userld, cm=>cmWthNanme("id")));
For <Comment >()
. Tabl eNane(" coment s");
}

}

Then, you can assign the mappings class in your configuration.

Mappi ngConfi gur ati on. A obal . Def i ne<MyMappi ngs>();

LINQ API examples

The simple query example is great, but the LINQ component has a lot of other methods for doing Inserts,
Updates, Deletes, and even Create table. Including LINQ operations Wher e(), Sel ect (), O derBy(),
Order ByDescendi ng(), First (), Count (), and Take(), it translates into the most efficient CQL
query possible, trying to retrieve as less data possible.

For example, the following query only retrieves the username from the cluster to fill in a lazy list of st ri ng
on the client side.

| Enuner abl e<string> userNanes = (fromuser in users where user.&Goup ==
"admi n" sel ect user.Nane).Execute();

Some other examples:

/'l First row or null using a query

User user = (
fromuser in users where user.Goup == "adm n"
sel ect user.Nane).FirstO Default().Execute();

/'l First row or null using | anbda syntax

User user = users.Were(u => u.Userld == "john")
.FirstODefaul t()
. Execut e();

/'l Use Take() to limt your result sets server side
var user Admins = (
fromuser in users where user.Goup == "adnin"
sel ect user. Nane). Take(100). Execute();

/'l Use Select() to project to a new form server side
var user Coordi nates = (
fromuser in users where user.Goup == "adnin"
sel ect new Tupl e(user. X, user.Y)).Execute();

24

C# driver reference

/'l Delete

users. Were(u => u. Userld == "john")
. Del ete()
. Execut e();

/'l Delete If (Cassandra 2.1+)

users. Wiere(u => u. Userld == "john")
.Deletelf(u => u. Last Access == val ue)
. Execut e();

/'l Update

users. Wiere(u => u. Userld == "john")
.Select(u => new User { LastAccess = TineUuid. New d()})
. Updat e()
. Execut e();

ADO.NET

Implementation of the ADO.NET interfaces and abstract classes common present in the Syst em Dat a
namespace of the .NET Framework: | DbConnect i on, | DoComrand, and | DbDat aAdapt er .

Implementation of the ADO.NET interfaces and abstract classes common present in the Syst em Dat a
namespace of the .NET Framework: | DbConnect i on, | DoCommand, and | DbDat aAdapt er .

It allows users to interact with a Cassandra cluster using a common .NET data access pattern.

Example
var connection = new Cgl Connection(connectionString);
connecti on. Open();
try
{

var conmand = connecti on. Creat eCommand() ;
command. CommandText = "UPDATE tbl SET val = 'z'" WHERE id = 1";
command. Execut eNonQuery();

inally

connection. Cl ose();

— - —h

Mapping UDTs
You map UDTs to C# types.

Cassandra 2.1 introduces support for User-defined types (UDT). A user-defined type simplifies handling a
group of related properties.

A quick example is a user account table that contains address details described through a set of columns:
street, city, zip code. With the addition of UDTSs, you can define this group of properties as a type and
access them as a single entity or separately.

User-defined types are declared at the keyspace level.

In your application, you can map your UDTs to application entities. For example, given the following UDT:

CREATE TYPE address (
street text,

25

http://msdn.microsoft.com/en-us/library/system.data.idbconnection(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.data.idbcommand(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.data.idbdataadapter(v=vs.110).aspx
/en/cql/3.1/cql/cql_reference/cqlRefUDType.html

C# driver reference

city text,
zip int,
phones |i st <text>

)

You create a C# class that maps to the UDT using the [data type conversions]:

public class Address

public string Street { get; set; }

public string Gty { get; set; }

public int Zip { get; set; }

public | Enuner abl e<string> Phones { get; set;}

}

You declare the mapping once at the session level:

sessi on. User Def i nedTypes. Defi ne(
Udt Map. For <Addr ess>()
)

Once declared the mapping will be available for the lifetime of the application:

var results = session. Execute("SELECT id, nane, address FROM users where id
= 756716f 7- 2e54- 4715- 9f 00- 91dcbeabcf 50") ;

var row = results.First();

/'l You retrieve the field as a value of type Address

var user Address = row. Get Val ue<Addr ess>("address");

Consol e. WiteLine("The user lives on {0} Street"”, userAddress. Street);

CQL column and C# class properties mismatch

For the automatic mapping to work, the table column names and the class properties must match (note
that column-to-field matching is case-insensitive). For example, in the UDT and the C# class examples
aboved were changed:

CREATE TYPE address (
street text,
city text,
zi p_code int,
phones |i st<text>

)

public class Address
public string Street { get; set; }
public string Gty { get; set; }
public int Zi pCode { get; set; }
public | Enunerabl e<string> Phones { get; set;}

}

You can also define the properties manually:

sessi on. User Def i nedTypes. Defi ne(

26

C# driver reference

Udt Map. For <Addr ess>()
.Map(a => a. Street, "street")
.Map(a => a.City, "city")
.Map(a => a.Zip, "zip")
. Map(a => a. Phones, "phones")

)

You can still use automatic mapping, but you must add a call to the Map method. For example:

sessi on. User Def i nedTypes. Defi ne(
Udt Map. For <Addr ess>()
. Aut omap()
. Map(a => a. Zi pcode, "zip_code")

Nesting User-defined types In CQL

UDTs can be nested relatively arbitrarily. For the C# driver you have to define the mapping to all the user-
defined types used.

Based on the previous example, let's change the phones column from set <t ext > to a set <phone>,
where phone contains an alias, a number and a country code.

Phone UDT

CREATE TYPE phone (
alias text,
nunber text,
country_code int

)

Address UDT

CREATE TYPE address (
street text,
city text,
zi p_code int,
phones | i st <phone>

)

Now we can update the Address class to use the Phone class:

public class Address

public string Street { get; set; }

public string Gty { get; set; }

public int Z pCode { get; set; }

publ i c | Enuner abl e<Phone> Phones { get; set;}

}

You have to define the mapping for both classes
sessi on. User Def i nedTypes. Defi ne(
Udt Map. For <Phone>(),

Udt Map. For <Addr ess>()
. Aut omap()

27

C# driver reference

. Map(a => a. Zi pCode, "zip_code")

After that, you can reuse the mapping within your application.

var user Address = row. Get Val ue<Addr ess>("address");
var mai nPhone = user Address. Phones. First();
Consol e. WitelLine(“User main phone is {0}”, mainPhone. Alias);

Node discovery

Description

The C# driver automatically discovers and uses all of the nodes in a Cassandra cluster, including newly
bootstrapped ones.

The driver discovers the nodes that constitute a cluster by querying the contact points used in building
the cluster object. After this, the driver keeps track of the nodes in the cluster by registering to Cassandra
events from it.

Paging results

The driver automatically pages results by default or you can manually page through the rows in a RowSet.

Automatic paging

You can iterate indefinitely over the RowSet , having the rows fetched block by block until the rows
available on the client side are exhausted.

var ps = session.Prepare("SELECT * fromtbl1l WHERE key = ?");
/1l Set the page size at statenent |evel.

var statenent = ps. Bi nd(key). Set PageSi ze(1000);

var rs = session. Execut e(statenent);

foreach (var rowin rs)

/1 The enunerator will yield all the rows from Cassandra.
/'l Retrieving themin the back in blocks of 1000.

}

Manual paging

If you want to retrieve the next page of results only when you ask for it (for example, in a webpager), use
the Pagi ngSt at e property in the RowSet to execute the following statement.

var ps = session. Prepare("SELECT * fromtbl1l WHERE key = ?");
/| Disable autonatic paging.
var statenent = ps
. Bi nd(key)
. Set Aut oPage(f al se)
. Set PageSi ze(pageSi ze) ;
var rs = session. Execut e(statenent);
/1l Store the paging state
var pagi ngState = rs. Pagi ngSt at e;

28

http://www.datastax.com/drivers/csharp/2.5/html/T_Cassandra_RowSet.htm
http://www.datastax.com/drivers/csharp/2.5/html/P_Cassandra_RowSet_PagingState.htm
http://www.datastax.com/drivers/csharp/2.5/html/T_Cassandra_RowSet.htm

C# driver reference

/] Later in time ...
/'l Retrieve the follow ng page of results.
var statenment2 = ps
. Bi nd(key)
. Set Aut oPage(f al se)
. Set Pagi ngSt at e(pagi ngSt at e)
var rs2 = Session. Execut e(statenment 2);

Note: The Pagi ngSt at e property is not encrypted and can be used to inject values to retrieve
other partitions, so be careful not to expose it to the end user.

Automatic paging in both LINQ and Mapper components

Both LINQ and Mapper queries support automatic paging: as you iterate through the mapped results, it
fetches the following pages. If you want to manually page, you can use LINQ's Execut ePaged() method,
Mapper's Fet chPage(), or their async counterparts.

A LINQ paging example:

/'l Providing page size.

| Page<User > adni nUsers = users
.Where(u => u. Group == "adni n")
. Set PageSi ze(pageSi ze)
. Execut ePaged() ;

/'l Providing paging state (foll owi ng pages).
| Page<User > adni nUsers = users

.Where(u => u. Group == "adni n")

. Set PageSi ze(pageSi ze)

. Set Pagi ngSt at e(pagi ngSt at e)

. Execut ePaged() ;

A Mapper paging example:

| Page<User > users = mapper. Fet chPage<User >(pageSi ze, pagi ngState, query,
par anet ers);

/1 O using query options
| Page<User > aut hors = mapper. Fet chPage<User >(

Cql . New(query, paraneters). WthQOptions(opt =>
opt . Set PageSi ze(pageSi ze) . Set Pagi ngSt ate(state)));

Parameterized queries (positional and named)
You can hind the values of parameters in a BoundSt at enent or Si npl eSt at enent either by position or
by using named markers.

Positional parameters example

var statenment = session. Prepare("SELECT * FROM table where a = ? and b
= ?");:

/1 Bind par aneter by marker position
sessi on. Execut e(st at enent . Bi nd("aVal ue", "bValue"));

29

C# driver reference

Named parameters example

var statenment = session.Prepare("SELECT * FROMtable where a = :a and b
=:b");

/1 Bind by nane using anonynous types

sessi on. Execut e(statenent.Bind(new { a = "aValue", b = "bValue" }));

You can declare the named markers in your queries and use as parameter names when binding.

Prepared statements

Using prepared statements provides multiple benefits. A prepared statement is parsed and prepared on
the cluster nodes and is ready for future execution. When binding parameters, only these (and the query
id) are sent over the wire. These performance gains add up when using the same queries (with different
parameters) repeatedly.

The examples show the use in-list for prepared statements.

In-list examples
In-list example 1

var statenment2 = Session. Prepar e(
"SELECT * FROM Dynami cTi neUUl DTabl e WHERE id = : RowkKey AND Col unrmNane

I N : names");

Li st<string> naneslist = new List<string>();

nanmesl i st. Add(" col Nanmel");

nanesl i st. Add(" col Nane2");

RowSet results2 = Session. Execut e(statenent2. Bind(new { RowKey = 1,
nanes=naneslist }));

System Consol e. WiteLine ("Here we are. The count is: ");

System Consol e. WiteLine (results2. Count());

In-list example 2

var statenmentl = Session. Prepare(
"SELECT * FROM Dynami cTi neUUl DTabl e WHERE id = : Rowkey AND Col umNane | N
(:nanesl, :nanmes2)");
RowSet resultsl = Session. Execut g(
statement 1. Bi nd(new { RowKey = 1, nanmesl = "col Nanel", nanmes2 =
"col Nane2"})

Syst e,m Consol e. WitelLine("Here we are. The count is: ");
System Consol e. WiteLine(resultsl. Count());

Routing queries

When using the TokenAwar ePol i cy, the driver uses the Rout i ngKey to determine which nodes is used
as coordinator for a given statement.

Prepared statements

When using prepared statements, the driver will determine which of the query parameters compose the
partition key based on the prepared statement metadata.

30

http://www.datastax.com/drivers/csharp/2.5/html/P_Cassandra_Statement_RoutingKey.htm

C# driver reference

Consider a table users that has a single partition key, id.

Pr epar edSt at enent prepared = session. Prepare(
"I NSERT | NTO users (id, nanme) VALUES (?, ?2)");

When binding the parameters, the driver knows which parameter corresponds to the partition key.

BoundSt at enent bound = prepared. Bi nd(Gui d. New&ui d(), "Franz Ferdi nand");
sessi on. Execut e(bound) ;

As a rule of thumb, use prepared statements, and the driver does all the routing for you.

There is one scenario when using prepared statements where the driver will not be able to determine
which parameters form the partition key: when using named parameters and the parameter names do not
match the column names.

Routing key generation for the following query with named parameters will work:

Pr epar edSt at enent prepared = session. Prepare(
"I NSERT | NTO users (id, nane) VALUES (:id, :nane)");

But generation for the following query will not work:

Prepar edSt at enent prepared = session. Prepar e(
"I NSERT | NTO users (id, name) VALUES (:id_changed_name, :nane)");

In these cases, either use the same parameter name as the column name or specify the parameter names
that compose the partition key yourself:

prepar ed. Set Rout i ngNanes("i d_changed_nane");

Simple statements

If you want to use a simple statement with routing, you must specify the routing values.

var id = Quid. NewGui d();
var query = new Sinpl eStatenment (
"I NSERT | NTO users (id, nane) VALUES (?, ?)", id, "Franz Ferdinand");
/'l You nust specify the values that conpose the partition key
query. Set Rout i ngVal ues(i d);
sessi on. Execut e(query);

BATCH statements

If you want to enable routing for BATCH statements, you must specify the routing values.

var partitionKey = Guid. NewGui d();

var batch = new Batch();

/1 ... Add statenents to the query

/'l You nust specify the values that conpose the partition key
bat ch. Set Rout i ngVal ues(partitionKey);

sessi on. Execut e(bat ch) ;

31

C# driver reference

Tuples
The tuple type holds fixed-length sets of typed positional fields.

The new Cassandra tuple data types are now mapped to CLR Tupl e generic type.

32

FAQ

FAQ

Should I create multiple ISession instances in my client application?

Normally you should use one | Sessi on instance per application. You should share that instance between
classes within your application.

How can | enable tracing in the driver?

Code example

/1l Specify the mininumtrace |evel you want to see

Cassandr a. Di agnosti cs. CassandraTraceSwi tch. Level = TracelLevel .| nfo;
/1 Add a standard .NET trace |istener

Trace. Li st eners. Add(new Consol eTraceli stener());

What is the recommended number of queries that BATCH size should
contain?

Code example

It depends on the size of the requests and the number of column families affected by the BATCH. Large
BATCHes can cause a lot of stress on the coordinator. Consider that Cassandra BATCHes are not suitable
for bulk loading, there are dedicated tools for that. BATCHes allow you to group related updates in a single
request, so keep the BATCH size small (in the order of tens).

Starting from Cassandra version 2.0.8, the node issues a warning if the batch size is greater than 5K.

What is the best way to retrieve multiple rows that contain large-sized
blobs?

You can decrease the number of rows retrieved per page. By using the Set PageSi ze() method on a
statement, you instruct the driver to retrieve fewer rows per request (the default is 5000).

33

/en/cassandra/2.0/cassandra/tools/toolsBulkloader_t.html
https://issues.apache.org/jira/browse/CASSANDRA-6487

API reference

API reference

DataStax C# driver for Apache Casandra

34

http://docs.datastax.com/en/drivers/csharp/2.5/

Tips for using DataStax documentation

Tips for using DataStax documentation

Navigating the documents

To navigate, use the table of contents or search in the left navigation bar. Additional controls are:

Hide or display the left navigation.

Go back or forward through the topics as listed in
the table of contents.

Toggle highlighting of search terms.

S Print page.

L See doc tweets and provide feedback.
Grab to adjust the size of the navigation pane.

T Appears on headings for bookmarking. Right-click
the 1 to get the link.

° Toggles the legend for CQL statements and

Other resources

You can find more information and help at:

« Documentation home page
» Datasheets

* Webinars

« Whitepapers

« Developer blogs

e Support

nodetool options.

35

http://docs.datastax.com/en/index.html
http://www.datastax.com/resources/datasheets
http://www.datastax.com/resources/webinars
http://www.datastax.com/resources/whitepapers
http://www.datastax.com/dev/blog
http://www.datastax.com/what-we-offer/products-services/support

	Contents
	About the C# driver
	Architecture
	The driver and its dependencies

	Writing your first client
	Connecting to a Cassandra cluster
	Using a session to execute CQL statements
	Using bound statements

	C# driver reference
	Asynchronous statement execution
	Automatic failover
	Cluster configuration
	Tuning policies
	Load balancing policy
	Reconnection policy
	Retry policy

	Connection options
	Protocol options
	Pooling options
	Socket options

	CQL data types to C# types
	Debugging
	Driver components
	Core component
	Mapper component
	LINQ component
	ADO.NET

	Mapping UDTs
	Node discovery
	Paging results
	Parameterized queries (positional and named)
	Prepared statements
	Routing queries

	FAQ
	Should I create multiple ISession instances in my client application?
	How can I enable tracing in the driver?
	What is the recommended number of queries that BATCH size should contain?
	What is the best way to retrieve multiple rows that contain large-sized blobs?

	API reference
	Using the docs

