DATASTAX®

Java Driver 2.1 for Apache Cassandra
Documentation

${ds.localized.time}

© 2015 DataStax. All rights reserved.

Contents

Contents

ADOUL The JAVA IV ..eiiiiiiiiiii e e e e e e e e e e e e et et e e s e e e e e eeeeeeeeeeeeeennnnnns 4
L o 1 (= To (U1 PP PPPPPPPPPPPPRPP 5
The driver and itS dEPENUENCIES.uuiiiiiiiiiie et e e e e e e e e e s s e s aeaaeeaaeaeaanan 5
WItING YOUT fIrSt CHENT. ... e 7
Connecting t0 @ CaSSANAIA CIUSTEI.......coiiiiiiiiiie ittt e e e e e e e e e e b e e eeeaeeas 7

Using a session t0 execute CQL StAEMENTS.iiiiiii ittt 9

USING DOUNG STALEMIENTS. ...ttt e ettt e e e e e e e e e s e bbb e e e e e e e e e e e s 14

N F= (Y2 W0 LAV g] =T =T o Lo PPRRR 16
Four simple rules for coding With the driVer..........c..eeiiiiiiiii e 16
ASYNCRIONOUS 1Otttk e et e et e e e 17
AULOMALIC TAIOVET ...ttt et e e e e e e e s ettt eeeeeaeeeeeeaansesbanneeeeaaaeens 18
BATCH SEAIEIMENTS. ... e e e e et ettt et et ettt baba b a e e e s e e e e e e aeeaeaeaeaeeeeeeeeesanrnnnnns 19
CIUSTEE CONTIGUIBTION.eeeeiietee ettt e et e ettt e e e e bt e e e e s bb e e e e e st e e e e e annnes 21
TUNING POLICIES. ..ttt ettt ettt e e st e e e sttt e e s aanae e e s 21

[6f]] pT=Tot o] g 0] o110] 4 1S TP PRTTPP 22

(0] gl p=Tot ol g =To U1 Tg=T0 0 T=T o PRSP PRSPPI 24

CQL data tyPES 10 JAVEA TYPES. . .ueeeiiiiiiiiiie ittt ettt e et e e et e e e et e e e et be e e e e nbes 24

(O @] 1= 11T 41T o TP 25
Building dynamic queries programmatically with the Quer yBui | der APlL.......ccccovveveeeeennn. 26

D= o 10 o o oo TR PRSP PPPPPPPPN 29
(ot =T o 110 1 O O PP PPPPTPPRP 29

Y ol g1 (o] 10 o TP TP PT P PPPRR 30

EN@DING TrACING. ¢ ee ettt et 32

Enabling debug-level [0ggiNg.........uuiiiiiiiii e 37

N\ oTo [Yoo}V =T o TP PP P PPPPPPPO 39
ODJECE-MAPPING AP .ottt ettt e e e et e e s st e e e et e e 39

BASIC CRUD OPEIALIONS.ceiiiiitiiiieeiiiieie ettt ettt e st e e st e e e e e s s 39

Y F=To] o1 aTe BT SO PP PP P PTPPRP P 42
AcCeSSOr-annotated INTEITACES.iii i 44

Setting up your Java development ENVIFONMENT.........cuuiiiiiiiiiiee ettt 45

I 0 ST 1Y 01 PSP P UPPUPPPPPPPTT 45
USEI-0EMINEU TYPES. .ttt e e e e bttt e e e e bbbt e e e e sbb bt e e e e s bt e e e e e s anbaeeeeenees 46

(] AN = PSP PPRUPPPRP 46

Direct field ManipUIBLION..........ooiiiii e 47

F A QD ettt ettt ettt ettt ettt ettt ettt ettt ettt et ettt ettt 49
Can | check if a conditional statement (lightweight transaction) was successful?.............ccccvvvvneen. 49

What is a parameterized statement and how can | USE it?..........eueviiieeeiiiiiiiiiiiieice e 49

Does a parameterized statement €SCape PAramMELEIS?.......cciiiiiiiie et 49
What's the difference between a parameterized statement and a Prepared statement?.................. 49

Can | combine Prepared statements and normal statements in a batch?.............cccccv e, 50

Can | get the raw bytes of @ teXt COIUMNT?......c.oi i e e e e e e 50

How to increment counters with QUErYBUIIAEI?.........uuviiiiiiiieie it e e 50

Contents

Is there a way to control the batch size of the results returned from a quUery?.........ccccccoovviiiiiiinnen. 50
What's the difference between using setFetchSize() and LIMIT?. ... 50
N e I = =T = o = P RPRUP 51
(0 LY Lo T o =0 [Yo P 52

About the Java driver

About the Java driver

Use this driver in production applications to pass CQL statements from the client to a cluster and retrieve,
manipulate, or remove data.

The Java driver is a modern, feature-rich and highly tunable Java client library for Apache Cassandra
(1.2+) and DataStax Enterprise (3.1+) using exclusively Cassandra's binary protocol and Cassandra Query
Language v3.

Use this driver in production applications to pass CQL statements from the client to a cluster and
retrieve, manipulate, or remove data. Cassandra Query Language (CQL) is the primary language for
communicating with the Cassandra database. Documentation for CQL is available in CQL for Cassandra
2.x. DataStax also provides DataStax DevCenter, which is a free graphical tool for creating and running
CQL statements against Apache Cassandra and DataStax Enterprise. Other administrative tasks can be
accomplished using OpsCenter.

What's new in 2.1.67?

e Revert of JAVA-425, which marked a node down when a query timed out, and led to
NoHost Avai | abl eExcept i ons under high load (probably our most requested change!) This
no longer happens, and if a node is really having problems, it will be detected by other existing
mechanisms (notification from another node that detected it through gossip, failed connection
heartbeat).

e Upgrade of Netty to 4.0.27 and application-side coalescing of protocol frames.

e Speculative executions to preemptively retry requests when a host takes too long to reply (the client-
side equivalent to Cassandra'’s rapid read retry).

e Query logger that allows you to trace slow or failed queries.

e Access to the paging state and ability to re-inject it into a statement.

« New pool resizing algorithm (JAVA-419) that fixes issues with variable-sized pools (core connections !=
max).

* Internal optimizations around connection usage.

« EC2 address translator (Previously released in version 2.1.5), connection heartbeat, and token
metadata API.

What's new in 2.1?
The driver is compatible with all versions of Cassandra 1.2 and later.
e Cassandra 2.1 support

« User-defined types (UDT)
e Tuple type
* New features

» Simple object mapping API

/en/cql/3.1/cql/cql_intro_c.html
/en/cql/3.1/cql/cql_intro_c.html
/en/developer/devcenter/doc/devcenter/features.html
/en/latest-opsc

Architecture

Architecture

An overview of the Java driver architecture.

The Java Driver 2.1 for Apache Cassandra works exclusively with the Cassandra Query Language version
3 (CQL3) and Cassandra's new binary protocol which was introduced in Cassandra version 1.2.

Architectural overview

The driver architecture is a layered one. At the bottom lies the driver core. This core handles everything
related to the connections to a Cassandra cluster (for example, connection pool, discovering new nodes,
etc.) and exposes a simple, relatively low-level APl on top of which a higher level layer can be built. A
Mapping and a JDBC module will be added on top of that in upcoming versions of the driver.

The driver relies on Netty to provide non-blocking I/0 with Cassandra for providing a fully asynchronous
architecture. Multiple queries can be submitted to the driver which then will dispatch the responses to the
appropriate client threads.

The driver has the following features:

* Asynchronous: the driver uses the new CQL binary protocol asynchronous capabilities. Only a relatively
low number of connections per nodes needs to be maintained open to achieve good performance.

* Nodes discovery: the driver automatically discovers and uses all nodes of the Cassandra cluster,
including newly bootstrapped ones.

« Configurable load balancing: the driver allows for custom routing and load balancing of queries to
Cassandra nodes. Out of the box, round robin is provided with optional data-center awareness (only
nodes from the local data-center are queried (and have connections maintained to)) and optional token
awareness (that is, the ability to prefer a replica for the query as coordinator).

» Transparent failover: if Cassandra nodes fail or become unreachable, the driver automatically and
transparently tries other nodes and schedules reconnection to the dead nodes in the background.

e Cassandra trace handling: tracing can be set on a per-query basis and the driver provides a convenient
API to retrieve the trace.

e Convenient schema access: the driver exposes a Cassandra schema in a usable way.

« Configurable retry policy: a retry policy can be set to define a precise behavior to adopt on query
execution exceptions (for example, timeouts, unavailability). This avoids polluting client code with retry-
related code.

* Tunability: the default behavior of the driver can be changed or fine tuned by using tuning policies and
connection options.

Queries can be executed synchronously or asynchronously, prepared statements are supported, and a
query builder auxiliary class can be used to build queries dynamically.

The driver and its dependencies

The Java driver only supports the Cassandra Binary Protocol and CQL3.

Cassandra binary protocol

The driver uses the binary protocol that was introduced in Cassandra 1.2. It only works with a version of

Cassandra greater than or equal to 1.2. Furthermore, the binary protocol server is not started with the

default configuration file in Cassandra 1.2. You must edit the cassandr a. yani file for each node:
start_native_transport: true

Then restart the node.

http://netty.io/

Architecture

Cassandra compatibility

The 2.0 version of the driver handles a single version of the Cassandra native protocol for the sake of
simplicity. Cassandra does the multiple version handling. This makes it possible to do a rolling upgrade of
a Cassandra cluster from 1.2 to 2.0 and then to upgrade the drivers in the application layer from 1.0 to 2.0.
Because the application code needs to be changed anyway to leverage the new features of Cassandra
2.0, this small constraint appear to be fair.

Java driver 1.0.x Java driver 2.0.x
Cassandra 1.2.x Compatible Compatible
Cassandra 2.0.x Compatible for Cassandra 1.0 Compatible

API and commands

Maven dependencies

The latest release of the driver is available on Maven Central. You can install it in your application using
the following Maven dependency:

<dependency>
<gr oupl d>com dat ast ax. cassandr a</ gr oupl d>
<artifactld>cassandra-driver-core</artifactld>
<versi on>2. 1. 5</ versi on>

</ dependency>

You ought to build your project using the Mojo Versions plug-in. Add the versions:display-dependency-
updates setting to your POM file, and it lets you know when the driver you are using is out of date during
the build process.

http://mojo.codehaus.org/versions-maven-plugin/display-dependency-updates-mojo.html

Writing your first client

Writing your first client

This section walks you through a small sample client application that uses the Java driver to connect to
a Cassandra cluster, print out some metadata about the cluster, execute some queries, and print out the
results.

Connecting to a Cassandra cluster

The Java driver provides a Cluster class which is your client application's entry point for connecting to a
Cassandra cluster and retrieving metadata.

Before you begin
This tutorial assumes you have the following software installed, configured, and that you have familiarized
yourself with them:

Apache Cassandra
Eclipse IDE
Maven 2 Eclipse plug-in

While Eclipse and Maven are not required to use the Java driver to develop Cassandra client applications,
they do make things easier. You can use Maven from the command-line, but if you wish to use a different
build tool (such as Ant) to run the sample code, you will have to set up your environment accordingly.

See for more information on setting up your programming environment to do this.

About this task

Using a Cluster object, the client connects to a node in your cluster and then retrieves metadata about the
cluster and prints it out.

Procedure

1. Inthe Eclipse IDE, create a simple Maven project.
Use the following data:

e groupld: com.example.cassandra
« artifactld: simple-client
2. Right-click on the simple-client node in the Project Viewer and select Maven > Add Dependency.

a) Enter datastax in the search text field.
You should see several DataStax libraries listed in the Search Results list.

b) Expand the com.datastax.cassandra cassandra-driver-core library and select the version you want.
3. Create a new Java class, com.example.cassandra.SimpleClient.
a) Add an instance field, cluster, to hold a Cluster reference.
private Cluster cluster;

b) Add an instance method, connect, to your new class.
public void connect(String node) {}

The connect method:

e adds a contact point (node IP address) using the C ust er . Bui | d auxiliary class
¢ builds a cluster instance
e retrieves metadata from the cluster

http://cassandra.apache.org/
http://www.eclipse.org/
http://www.eclipse.org/m2e/

Writing your first client

e prints out:

« the name of the cluster
* the datacenter, host name or IP address, and rack for each of the nodes in the cluster

public void connect(String node) {

cluster = Cluster. builder()
. addCont act Poi nt (node)
Lbuild();

Met adat a nmetadata = cl uster. get Met adat a() ;

System out. printf("Connected to cluster: %\n",
nmet adat a. get C ust er Nane()) ;

for (Host host : netadata.getAllHosts()) {

Systemout.printf("Datacenter: %; Host: %; Rack: %\n",

host . get Dat acenter (), host.get Address(), host.getRack());

}
}

¢) Add an instance method, cl ose, to shut down the cluster instance once you are finished with it.

public void close() {
cluster.close();
}

d) In the class main method instantiate a Si npl e i ent object, call connect on it, and close it.

public static void nmain(String[] args) {
SinpleCient client = new SinpleCient();
client.connect("127.0.0.1");
client.close();

}

4. Right-click in the Si npl eCl i ent class editor pane and select Run As > 1 Java Application to run the
program.

Code listing
The complete code listing illustrates:

e connecting to a cluster
e retrieving metadata and printing it out
» closing the connection to the cluster

package com exanpl e. cassandr a;

i mport com dat ast ax. driver.core. C uster;
i mport com dat ast ax. dri ver. core. Host;
i mport com dat ast ax. dri ver. core. Met adat a;

public class Sinpledient {
private Cluster cluster;

public void connect(String node) {
cluster = Custer. builder()
. addCont act Poi nt (node)
Cbuild();
Met adat a netadata = cl uster. get Metadat a();
Systemout. printf("Connected to cluster: %\n",
nmet adat a. get Cl ust er Nanme()) ;

Writing your first client

for (Host host : netadata.getAll Hosts()) {
Systemout. printf("Datatacenter: %; Host: %; Rack: %s\n",
host . get Dat acenter (), host. get Address(), host.getRack());

}

public void close() {
cluster.close();
}

public static void nmain(String[] args) {
Simpledient client = new Sinpledient();
client.connect("127.0.0.1");
client.close();

}
}

When run the client program prints out this metadata on the cluster's constituent nodes in the console
pane:

Connected to cluster: xerxes

Dat at acenter: datacenterl; Host: /127.0.0.1; Rack: rackl
Dat at acenter: datacenterl; Host: /127.0.0.2; Rack: rackl
Dat at acent er: datacenterl; Host: /127.0.0.3; Rack: rackl

Using a session to execute CQL statements

Once you have connected to a Cassandra cluster using a cluster object, you retrieve a session, which
allows you to execute CQL statements to read and write data.

Before you begin
This tutorial uses a CQL3 schema which is described in a post on the DataStax developer blog. Reading
that post, could help with some of the new CQL3 concepts used here.

About this task

Getting metadata for the cluster is good, but you also want to be able to read and write data to the cluster.
The Java driver lets you execute CQL statements using a session instance that you retrieve from the
Cluster object. You will add code to your client for:

e creating tables

* inserting data into those tables
e querying the tables

e printing the results

Procedure
1. Modify your Si npl ed i ent class.
a) Add a Sessi on instance field.
private Session session;

b) Declare and implement a getter for the new session field.

public Session getSession() {
return this.session,

http://www.datastax.com/dev/blog/cql3-for-cassandra-experts

Writing your first client

}

c) Get a session from your cluster and store the reference to it.
Add the following line to the end of the connect method:

session = cluster.connect();

You can execute queries by calling the execut e method on your session object. The session maintains
multiple connections to the cluster nodes, provides policies to choose which node to use for each query
(round-robin on all nodes of the cluster by default), and handles retries for failed queries when it makes

sense.

Session instances are thread-safe and usually a single instance is all you need per application.
However, a given session can only be set to one keyspace at a time, so one instance per keyspace
is necessary. Your application typically only needs a single cluster object, unless you're dealing with
multiple physical clusters.

2. Add an instance method, cr eat eSchenm, to the Si npl eCl i ent class implementation.

public void createSchema() { }

3. Add the code to create a new schema.
a) Execute a statement that creates a new keyspace.

Add to the cr eat eSchenma method:

sessi on. execut e(" CREATE KEYSPACE | F NOT EXI STS sinplex WTH replication
"4
"= {'class':'SinpleStrategy', 'replication_factor':3};");

In this example, you create a new keyspace, si npl ex.

b) Execute statements to create two new tables, songs and playlists.
Add to the cr eat eSchema method:

sessi on. execut e(
"CREATE TABLE | F NOT EXI STS si npl ex. songs (" +
"id uuid PRI MARY KEY," +
"title text," +
"al bumtext," +
"artist text," +
"tags set<text> " +
"data bl ob" +
_ "))
sessi on. execut e
"CREATE TABLE | F NOT EXI STS sinpl ex. playlists (" +
"id uuid," +
"title text," +
"al bumtext, " +
"artist text," +
"song_id uuid," +
"PRI MARY KEY (id, title, album artist)" +
"))

4. Add an instance method, | oadDat a, to the Si npl eCi ent class implementation.

public void | oadData() { }

5. Add the code to insert data into the new schema.

10

Writing your first client

sessi on. execut e(

"I NSERT | NTO si npl ex.songs (id, title, album artist, tags)

"VALUES (" +
"756716f 7- 2e54- 4715- 9f 00- 91dcbeabef 50, " +
"'"La Petite Tonkinoise'," +
"' Bye Bye Blackbird ," +
"' Joséphi ne Baker'," +
"{'"jazz', '2013'})" +
")

sessi on. execut g(

"I NSERT | NTO si npl ex.playlists (id, song_id, title, album artist)

+
"VALUES (" +
"2cc9cch7-6221-4cch-8387-f22b6alb354d, " +
"756716f 7- 2e54- 4715- 9f 00- 91dcbeabef 50, " +
"'La Petite Tonkinoise'," +
"' Bye Bye Blackbird ," +
"' Joséphi ne Baker'" +

"))

(L

6. Add an instance method, quer ySchenm, that executes a SELECT statement on the tables and then

prints out the results.

a) Add code to execute the query.
Query the playlists table for one of the two records.

Resul t Set results
"WHERE i d

2cc9cch7-6221-4cch-8387-f 22b6alb354d; ") ;

sessi on. execut e("SELECT * FROM si npl ex. pl aylists

(L

The execute method returns a Resul t Set that holds rows returned by the SELECT statement.

b) Add code to iterate over the rows and print them out.

Systemout.println(String.format ("% 30s\t% 20s\t % 20s\ n%s",
"al bunt, "artist",

oo "))

for (Rowrow : results) {
Systemout.println(String.format ("% 30s\t% 20s\t % 20s",
row. getString("title"),
row. getString("al bun'), row getString("artist")));
}

Systemout. println();

"title",

7. In the class main method, add a call to the new cr eat eSchenms, | oadDat a, and quer ySchena

methods.

public static void nmain(String[] args) {
Sinmpledient client = new Sinpledient();
client.connect("127.0.0.1");
client.createSchena();
client.|oadbata();
client.querySchema();
client.close();

}

8. Add a call to close the session object in the cl ose method.

public void close() {
session. cl ose();

11

Writing your first client

cluster.close();

Code listing
The complete code listing illustrates:

e creating a keyspace and tables
* inserting data into tables
e querying tables for data

package com exanpl e. cassandra

i mport com dat astax. driver.core.d uster

i mport com dat ast ax. dri ver. core. Host;

i mport com dat ast ax. driver. core. Met adat a;
i mport com dat astax. driver.core. ResultSet;
i mport com dat ast ax. driver. core. Row,

i mport com dat ast ax. dri ver. core. Sessi on;

public class Sinpledient {
private Cluster cluster
private Session session

public Session getSession() {
return this.session
}

public void connect(String node) {
cluster = Custer. builder()
. addCont act Poi nt (node)
Lbuild();
Met adat a netadata = cl uster. get Met adat a() ;
Systemout.printf("Connected to cluster: %\n"
nmet adat a. get C ust er Nane()) ;
for (Host host : netadata.getAllHosts()) {
Systemout. printf("Datatacenter: %; Host: %; Rack: %\n",
host . get Dat acenter (), host.get Address(), host. getRack());
}

session = cluster.connect();

}

public void createSchema()
sessi on. execut e(" CREATE KEYSPACE | F NOT EXI STS sinplex WTH
replication " +
"= {'class':'SinpleStrategy', 'replication factor':3};");
sessi on. execut g(
"CREATE TABLE | F NOT EXI STS si npl ex. songs (" +
"id uuid PRI MARY KEY," +
"title text," +
"al bumtext," +
"artist text," +
"tags set<text>" +
"data bl ob" +
, "))
sessi on. execut e(
"CREATE TABLE | F NOT EXI STS sinpl ex. playlists (" +
"iduuid," +
"title text," +
"al bumtext, " +
"artist text," +
"song_id uuid," +

12

Writing your first client

"PRI MARY KEY (id, title, album artist)" +
II);II);
}

public void | oadData() {
sessi on. execut e(
"I NSERT | NTO si npl ex.songs (id, title, album artist, tags) " +

"VALUES (" +
"756716f 7- 2e54- 4715- 9f 00- 91dcbeabef 50, " +
"'La Petite Tonkinoise'," +
"' Bye Bye Blackbird ," +
"' Joséphi ne Baker'," +
"{'"jazz', '2013'})" +
")

sessi on. execut e(
"I NSERT | NTO simplex.playlists (id, song_id, title, album
artist) " +

"VALUES (" +
"2cc9ccbh7-6221- 4cch- 8387-f 22b6alb354d, " +
"756716f 7- 2e54- 4715- 9f 00- 91dcbeabef 50, " +
"'La Petite Tonkinoise' ," +
"' Bye Bye Blackbird ," +
"' Joséphi ne Baker'" +
"))

}

public void querySchema() {
Resul t Set results = session. execute("SELECT * FROM si npl ex. playlists "

"WHERE id = 2cc9cch7-6221-4ccb-8387-f22b6alb354d; ") ;
Systemout.println(String.format ("% 30s\t% 20s\t % 20s\ n%", "title"
"al bunt, "artist",

for (Rowrow : results) {
Systemout.println(String.format ("% 30s\t% 20s\t % 20s"
row. getString("title"),
row. getString("al bum'), row getString("artist")));
}

Systemout.println();
}

public void close() {
session. cl ose();
cluster.close();

}

public static void main(String[] args) {
Sinpledient client = new Sinpledient();
client.connect("127.0.0.1");
client.createSchena();
client.|oadbData();
client.querySchema();
client.close();

13

Writing your first client

Using bound statements

14

The previous tutorial used simple CQL statements to read and write data, but you can also use prepared
statements, which only need to be parsed once by the cluster, and then bind values to the variables and
execute the bound statement you read or write data to a cluster.

About this task

In the previous tutorial, you added a loadData method which creates a new statement for each INSERT,
but you may also use prepared statements and bind new values to the columns each time before
execution. Doing this increases performance, especially for repeated queries. You add code to your client
for:

e creating a prepared statement
e creating a bound statement from the prepared statement and binding values to its variables
e executing the bound statement to insert data

Procedure

1. Override the loadData method and implement it.

public void | oadData() { }

2. Add code to prepare an INSERT statement.
You get a prepared statement by calling the prepare method on your session.

Prepar edSt at enent st atenent = get Sessi on(). prepar e(
"I NSERT | NTO si npl ex. songs " +
"(id, title, album artist, tags) " +
"VALUES (2, 2, ?2, 2, ?2);");

3. Add code to bind values to the prepared statement's variables and execute it.
You create a bound statement by calling its constructor and passing in the prepared statement. Use the
bind method to bind values and execute the bound statement on the your session..

BoundSt at enent boundSt at enent = new BoundSt at enent (st at enent) ;
Set<String> tags = new HashSet <String>();
tags. add("jazz");
tags. add("2013");
get Sessi on() . execut e(boundSt at enment . bi nd(
UUID. fronString("756716f 7- 2e54- 4715- 9f 00- 91dcbeabcf 50"),
"La Petite Tonkinoise'",
"Bye Bye Bl ackbird' ",
"Joséphi ne Baker",

tags));

Note that you cannot pass in string representations of UUIDs or sets as you did in the loadData method.
4. Add code for the other two insertions into the si npl ex. songs table.
5. Add code to create a new bound statement for inserting data into the si npl ex. pl ayl i st s table.

statenment = get Session(). prepare(
"I NSERT | NTO si npl ex. playlists " +
"(id, song_id, title, album artist) " +
"VALUES (2, ?, ?2, 2, ?2);");
boundSt at ement = new BoundSt at enent (st at ement) ;
get Sessi on() . execut e(boundSt at enent . bi nd(

Writing your first client

UUID. fronSString("2cc9cchb7-6221-4cch-8387-f22b6alb354d"),
UUID. fronSString("756716f 7- 2e54- 4715- 9f 00- 91dcbeabcf 50"),
"La Petite Tonkinoise"

"Bye Bye Bl ackbird"

"Joséphi ne Baker"));

6. Add a call in the class main method to loadData.

public static void nmain(String[] args) {
BoundSt at ement sCli ent client = new BoundStatenentsClient();

cli
cli
cli
cli
cli
cli
cli

ent.connect ("127.0.0.1");
ent . createSchema();

ent .| oadbDat a() ;

ent. querySchena() ;

ent . updat eSchenma() ;

ent . dropSchema() ;
ent. cl ose();

15

Java driver reference

Java driver reference

Reference for the Java driver.

Four simple rules for coding with the driver

When writing code that uses the driver, there are four simple rules that you should follow that will also
make your code efficient:

« Use one cluster instance per (physical) cluster (per application lifetime)

* Use at most one session instance per keyspace, or use a single Session and explicitly specify the
keyspace in your queries

« If you execute a statement more than once, consider using a prepared statement

e You can reduce the number of network roundtrips and also have atomic operations by using batches

Cluster

A Cluster instance allows to configure different important aspects of the way connections and queries
will be handled. At this level you can configure everything from contact points (address of the nodes to
be contacted initially before the driver performs node discovery), the request routing policy, retry and
reconnection policies, and so forth. Generally such settings are set once at the application level.

Cluster cluster = Custer. builder()
.addCont act Point("10.1.12.3", "10.1.1.4", "10.1.1.5")
. W t hLoadBal anci ngPol i cy(new DCAwar eRoundRobi nPol i cy("US_EAST"))
Lbuild();
cl uster. getConfiguration()
. get Prot ocol Options()
. set Conpr essi on(Prot ocol Opti ons. Conpr essi on. LZ4);

Session

While the session instance is centered around query execution, the Session it also manages the per-
node connection pools. The session instance is a long-lived object, and it should not be used in a request-
response, short-lived fashion. The code should share the same cluster and session instances across your
application.

Prepared statements

Using prepared statements provides multiple benefits. A prepared statement is parsed and prepared on the
Cassandra nodes and is ready for future execution. When binding parameters, only these (and the query
id) are sent over the wire. These performance gains add up when using the same queries (with different
parameters) repeatedly.

Batch operations

The BATCH statement combines multiple data modification statements (INSERT, UPDATE, DELETE) into
a single logical operation which is sent to the server in a single request. Also batching together multiple
operations ensures these are executed in an atomic way: either all succeed or none.

To make the best use of BATCH, read about atomic batches in Cassandra 1.2 and static columns and
batching of conditional updates.

For more information see this blog post on the four simple rules.

16

http://www.datastax.com/dev/blog/4-simple-rules-when-using-the-datastax-drivers-for-cassandra
/en/cql/3.1/cql/cql_reference/batch_r.html
/en/cql/3.1/cql/cql_reference/batch_r.html?scroll=reference_ds_djf_xdd_xj__description_unique_12
/en/cql/3.1/cql/cql_using/use-batch-static.html
/en/cql/3.1/cql/cql_reference/batch_r.html?scroll=reference_ds_djf_xdd_xj__batch-conditional
http://www.datastax.com/dev/blog/4-simple-rules-when-using-the-datastax-drivers-for-cassandra

Java driver reference

Asynchronous 1/O
Use asynchronous methods to execute CQL statements so that your client does not block.

You can execute statements on a session objects in two different ways. Calling execute blocks the calling
thread until the statement finishes executing, but a session also allows for asynchronous and non-blocking
I/0O by calling the execut eAsync method.

About this task

Modify the functionality of the Si npl eCl i ent class by extending it and execute queries asynchronously
on a cluster.

Procedure

1. Add a new class, Asynchr onousExanpl e, to your si npl e- cassandr a- cl i ent project. It should
extend the Si npl ed i ent class.

package com exanpl e. cassandr a;

public class AsynchronousExanpl e extends Sinpledient {
}

2. Add an instance method, get Rows, and implement it.
a) Implement the get Rows method so it returns a ResultSetFuture object.

public ResultSet Future getRRows() {}

The Resul t Set Fut ur e class implements the j ava. uti | . concurrent. Fut ur e<V> interface.
Objects which implement this interface allow for non-blocking computation. The calling code may
wait for the completion of the computation or to check if it is done.

b) Using the Quer yBui | der class, build a SELECT query that returns all the rows for the song table
for all columns.

Statement statenent = QueryBuilder.select().all().fron("sinplex",
"songs");

c) Execute the query asynchronously and return the Resul t Set Fut ur e object.

return get Session().executeAsync(query);

3. Add a class method, main, to your class implementation and add calls to create the schema, load the
data, and then query it using the get Rows method.

public static void nmain(String[] args) {
AsynchronousExanpl e client = new AsynchronousExanpl e();
client.connect("127.0.0.1");
client.createSchenma();
client.|oadbata();
Resul t Set Future results = client.get Rows();
for (Rowrow : results.getUninterruptibly()) {
Systemout.printf("%: % / %\n",
row getString("artist"),
row. getString("title"),
row. get String("al buni));

client.dropSchema("si npl ex");
client.close();

17

Java driver reference

}

Of course, in our implementation, the call to get Uni nt er r upt i bl y blocks until the result set future
has completed execution of the statement on the session object. Functionally it is no different from

executing the SELECT query synchronously.

AsynchronousExample code listing

package com exanpl e. cassandr a;

i mport com dat astax. driver.core. Query;
i nport com dat ast ax. driver. core. Resul t Set Fut ur e;
i mport com dat ast ax. driver. core. Row,

i mport com dat ast ax. driver. core. querybuil der. QueryBui |l der;

public class AsynchronousExanpl e extends Sinpledient {
public AsynchronousExanpl e() {

}

public Result Set Future get Rows()

{
Query query = QueryBuilder.select().all().fron("sinplex",

return get Session().executeAsync(query);

}

public static void main(String[] args) {

AsynchronousExanpl e client = new AsynchronousExanpl e();

client.connect("127.0.0.1");
client.createSchena();
client.|oadbData();
Resul t Set Future results = client.get Rows();
for (Rowrow : results.getUninterruptibly()) {
Systemout.printf("%: % / %\n",

row. getString("artist"),

row. getString("title"),

row. getString("al bun'));

client.dropSchema("sinpl ex");
client.close();

Automatic failover

18

If a node fails to respond, the driver tries other ones in the cluster.

"songs");

If a Cassandra node fails or becomes unreachable, the Java driver automatically and transparently tries
other nodes in the cluster and schedules reconnections to the dead nodes in the background.

Description

How the driver handles failover is determined by which retry and reconnection policies are used when

building a cluster object.

Java driver reference

Examples

This code illustrates building a cluster instance with a retry policy which sometimes retries with a lower
consistency level than the one specified for the query.

public Roll YourOmC uster() {
Cluster cluster = Cluster. builder()
.addCont act Poi nt s("127.0.0.1", "127.0.0.2")
. Wi t hRet ryPol i cy(Downgr adi ngConsi st encyRetryPol i cy. | NSTANCE)
.wi t hReconnecti onPol i cy(new Const ant Reconnecti onPol i cy(100L))
Lbuild();
session = cluster.connect();

BATCH statements
Use BATCH statements to group together two or more CQL statements for execution.

Because the new data model introduced with CQL (version 3) breaks wide rows into several CQL rows,
it's common for applications to require to batch multiple | NSERT statements. Naturally, CQL comes with
a BEG N BATCH ... APPLY BATCH statement that allows you to group together several | NSERT
statements, so that you can build a string of such a batch request and execute it.

public class BatchCient extends SinpleCient {
public void | oadData() {
get Sessi on() . execut e(
"BEG N BATCH USI NG TI MESTAMP " +
" I NSERT | NTO si npl ex.songs (id, title, album artist)

VALUES (" +
UUI D. randonJUl D() +
", "Poulaillers'' Song', 'Janmais content', "Alain
Souchon'); " +
" I NSERT | NTO si npl ex.songs (id, title, album artist)
VALUES (" +

UUI D. randonJUl D() +

", '"Bonnie and Clyde', 'Bonnie and Cyde', 'Serge
Gai nsbourg'); " +

" I NSERT | NTO si nmpl ex. songs (id, title, album artist)

VALUES (" +

UUI D. randonmJul D() +

", 'Lighthouse Keeper', 'A O ockwrk Orange', 'Erika
Eigen'); " +
"APPLY BATCH'
)

Batching prepared statements

Prepared statements can be batched together as well as simple statements. Prepared statements are
useful for queries that are frequently executed in an application with different values, because they reduce
the network traffic and the overall processing time on both clients and servers by making it possible to send
only the values along with the identifier of the prepared statement to the server.

public class BatchClient extends SinpleCient {
public void | oadData() {
Prepar edSt at enent i nsert PreparedSt at enent = get Sessi on() . prepar e(
"BEG N BATCH USI NG TI MESTAMP " + tinestanp +

19

Java driver reference

" I NSERT | NTO si npl ex.songs (id, title, album artist) " +
"VALUES (?, 2, 2, ?); " +

" I NSERT | NTO si npl ex.songs (id, title, album artist) " +
"VALUES (2, ?, ?, ?2); " +

" I NSERT | NTO si npl ex.songs (id, title, album artist) " +
"VALUES (2, ?, ?, ?2); " +

"APPLY BATCH'

)

get Sessi on() . execut g(
i nsert Prepar edSt at enent . bi nd(
UUI D. randonJUl D(), "Seaside Rendezvous", "A N ght at
the Qpera", "Queen",
UUI D. randonmJUl D(), "Entre Nous", "Permanent Waves",
"Rush",
UUI D. randonJUl D(), "Frank Sinatra", "Fashion

)

Nugget ", " Cake"

}
}

Note: You cannot refer to bind variables in batched statements by name, but by position.

This does not work for all cases where you wish to use a batched prepared statement, because you need
to know the number of statements in the batch up front. Since version 2.0 of the driver, you can build
batched statements using individual prepared (or simple) statements and adding them individually.

public class BatchCient extends Sinpledient {
public void | oadData() {
Pr epar edSt at enent i nsert SongPr epar edSt at enent =
get Sessi on() . prepar e(
"I NSERT | NTO si npl ex.songs (id, title, album artist) VALUES
(7, 2,2, ?2);");
bat ch. add(i nsert SongPr epar edSt at enent . bi nd(
UUI D. randonUUl D(), "Die Mdsch", "In Gold", "WIIi
GCst ermann™)) ;
bat ch. add(i nsert SongPr epar edSt at enent . bi nd(
UUI D. randonmJul D(), "Meno From Turner", "Performance", "M ck
Jagger"));
bat ch. add(i nsert SongPr epar edSt at enent . bi nd(
UUI D. randonJUl D(), "La Petite Tonkinoise", "Bye Bye
Bl ackbird", "Joséphi ne Baker"));
get Sessi on() . execut e(bat ch);
}

Timestamps

Due to how Cassandra stores data, it is possible to have multiple results for a column in a row, and
timestamps are used to determine which is the most current one. These timestamps are generated by
default by the server or can be specified on a statement or on a batch programmatically.

public class BatchCient extends Sinpledient {
public void | oadData() {

long tinestanp = new Date().getTine();

get Sessi on() . execut g(
"BEG N BATCH USI NG TI MESTAMP " + tinestanp +
" I NSERT | NTO si npl ex.songs (id, title, album artist)

VALUES (" +
UUI D. randonmJul D() +

20

Java driver reference

, '"Poulaillers'' Song', 'Jammis content', 'Alain
Souchon'); " +
" I NSERT | NTO si npl ex.songs (id, title, album artist)
VALUES (" +
UUI D. randonmJul D() +
", '"Bonnie and Clyde', 'Bonnie and Cyde', 'Serge
Gai nsbourg'); " +
" I NSERT | NTO si npl ex.songs (id, title, album artist)
VALUES (" +
UUI D. randonJUl D() +
", 'Lighthouse Keeper', 'A O ockwrk Orange', 'Erika
Eigen'); " +
"APPLY BATCH'
)

Cluster configuration
Configure the cluster with different tuning policies and connection options.

You can modify the tuning policies and connection options for a cluster as you build it. The configuration
of a cluster cannot be changed after it has been built. There are some miscellaneous properties (such as
whether metrics are enabled, contact points, and which authentication information provider to use when
connecting to a Cassandra cluster).

Tuning policies
Tuning policies determine load balancing, retrying queries, and reconnecting to a node.

Load balancing policy
The load balancing policy determines which node to execute a query on.

Description
The load balancing policy interface consists of three methods:

 HostDi stance di stance(Host host) : determines the distance to the specified host. The values
are HostDistance.IGNORED, LOCAL, and REMOTE.

e void init(Custer cluster, Collection<Host> hosts): initializes the policy. The driver
calls this method only once and before any other method calls are made.

e |terator<Host> newQueryPl an() : returns the hosts to use for a query. Each new query calls this
method.

The policy also implements the Host.StateListener interface which is for tracking node events (that is add,
down, remove, and up).

By default, the driver uses a round robin load balancing policy when building a cluster object. There is also
a token-aware policy which allows the ability to prefer the replica for a query as coordinator. The driver
includes these three policy classes:

e DCAwar eRoundRobi nPol i cy
e RoundRobi nPol i cy
e TokenAwar ePol i cy

Reconnection policy
The reconnection policy determines how often a reconnection to a dead node is attempted.

21

Java driver reference

Description
The reconnection policy consists of one method:

 ReconnectionPolicy. Reconnecti onSchedul e newSchedul e() : creates a new schedule to use
in reconnection attempts.

By default, the driver uses an exponential reconnection policy. The driver includes these two policy
classes:

e Const ant Reconnecti onPol i cy
* Exponenti al Reconnecti onPol i cy

Retry policy
The retry policy determines a default behavior to adopt when a request either times out or if a node is
unavailable.

Description

A client may send requests to any node in a cluster whether or not it is a replica of the data being
queried. This node is placed into the coordinator role temporarily. Which node is the coordinator is
determined by the load balancing policy for the cluster. The coordinator is responsible for routing the
request to the appropriate replicas. If a coordinator fails during a request, the driver connects to a
different node and retries the request. If the coordinator knows before a request that a replica is down,
it can throw an Unavai | abl eExcept i on, but if the replica fails after the request is made, it throws
a Ti meout Except i on. Of course, this all depends on the consistency level set for the query before
executing it.

A retry policy centralizes the handling of query retries, minimizing the need for catching and handling of
exceptions in your business code.

The retry policy interface consists of three methods:

e RetryPolicy. RetryDeci si on onReadTi meout (St at ement st at enent,
Consi stencyLevel cl, int requiredResponses, int receivedResponses, bool ean
dataRetrieved, int nbRetry)

e RetryPolicy. RetryDeci sion onUnavai | abl e(St at enent st at enent,
Consi stencyLevel cl, int requiredReplica, int aliveReplica, int nbRetry)

e RetryPolicy. RetryDecision onWiteTi neout (St at enent st at enent,
Consi stencyLevel cl, WiteType witeType, int requiredAcks, int
recei vedAcks, int nbRetry)

By default, the driver uses a default retry policy. The driver includes these four policy classes:

e DefaultRetryPolicy

e Downgr adi ngConsi st encyRetryPol i cy
e Fal |l throughRetryPolicy

e Loggi ngRetryPol i cy

Connection options

22

There are three classes the driver uses to configure node connections.

Protocol options
Protocol options configure the port on which to connect to a Cassandra node and which type of
compression to use.

Description

Table 1: Protocol options

Java driver reference

Option

Description

Default

port

The port to connect to a
Cassandra node on.

9042

compression

What kind of compression to use
when sending data to a node:
either no compression or snappy.
Snappy compression is optimized
for high speeds and reasonable
compression.

ProtocolOptions.Compression.NONE

Pooling options

The Java driver uses connections asynchronously, so multiple requests can be submitted on the same

connection at the same time.

Description

The driver only needs to maintain a relatively small number of connections to each Cassandra host. These
options allow you to control how many connections are kept exactly. The defaults should be fine for most

applications.

Table 2: Connection pooling options

Option

Description

Default value

coreConnectionsPerHost

The core number of connections
per host.

2 for HostDistance.LOCAL, 1 for
HostDistance.REMOTE

maxConnectionPerHost

The maximum number of
connections per host.

8 for HostDistance.LOCAL, 2 for
HostDistance.REMOTE

maxSimultaneousRequestsPerCorj

rdwtioninfiveslodlsimultaneous
requests on all connections
to an host after which more
connections are created.

128

minSimultaneousRequestsPerCon

hebeomdhiEsholdimultaneous
requests on a connection below
which connections in excess are
reclaimed.

25

Socket options

Socket options configure the low-level sockets used to connect to nodes.

Description

All but one of these socket options comes from the Java runtime library's SocketOptions class. The
connectTimeoutMillis option though is from Netty's ChannelConfig class.

23

https://code.google.com/p/snappy/

Java driver reference

Connection requirements

Table 3: Pooling options

Option

Corresponds to

Description

connectTimeoutMillis

org.jboss.netty.channel.ChannelCd
"connectTineoutMillis"

riffge connect timeout in
milliseconds for the underlying
Netty channel.

keepAlive

java.net.SocketOptions.SO_KEEP

ALIVE

receiveBufferSize

java.net.SocketOptions.SO_RCVB

Uk hint on the size of the buffer
used to receive data.

reuseAddress

java.net.SocketOptions.SO_REUS

PADERer to allow the same port to
be bound to multiple times.

sendBufferSize

java.net.SocketOptions.SO_SNDB

Uk hint on the size of the buffer
used to send data.

soLinger java.net.SocketOptions.SO_LINGHRVhen specified, disables the
immediate return from a call to
close() on a TCP socket.

tcpNoDelay java.net.SocketOptions. TCPNODE[Li¥ables Nagle's algorithm on the

underlying socket.

Requirements for connecting to a cluster.

In order to ensure that the driver can connect to the Cassandra or DSE cluster, please check the following

requirements.

e the cluster is running Apache Cassandra 1.2+ or DSE 3.2+
e you have configured the following in the cassandr a. yam you have :

start_native_transport
| P address or

rpc_address :

true

e machines in the cluster can accept connections on port 9042

host nane reachable fromthe client

Note: The client port can be configured using the native_transport_port in cassandr a. yam .

CQL data types to Javatypes

A summary of the mapping between CQL data types and Java data types is provided.

24

Description

When retrieving the value of a column from a Row object, you use a getter based on the type of the

column.

Table 4: Java classes to CQL data types

CQL3 data type Java type
ascii java.lang.String
bigint long

/en/cassandra/2.0/cassandra/configuration/configCassandra_yaml_r.html

Java driver reference

CQL3 data type Java type

blob java.nio.ByteBuffer
boolean boolean

counter long

decimal java.math.BigDecimal
double double

float float

inet java.net.lnetAddress
int int

list java.util.List<T>

map java.util. Map<K, V>
set java.util.Set<T>

text java.lang.String
timestamp java.util.Date
timeuuid java.util. UUID

tuple com.datastax.driver.core.TupleType
uuid java.util.UUID
varchar java.lang.String

varint java.math.Biglinteger

CQL statements

CQL statements are represented by the Statement class.

You can configure a St at enent by.

e enabling or disabling tracing

e setting

* the consistency level

e retry policy
o fetch size
e routing key

Examples

You set these options on the statement object before execution. The following example shows how to set
the consistency level and the fetch size on two statements before they are executed.

public void querySchema() {
/'l setting the consistency |evel
St at enent st at enent

+

"WHERE i d

on a statenent
new Si npl eSt at enent (" SELECT * FROM si npl ex. songs "

2cc9cch7-6221-4cch-8387-f 22b6alb354d; ") ;

25

/en/drivers/java/2.0/com/datastax/driver/core/Statement.html

Java driver reference

Systemout.printf("Default consistency |evel = %\n",
st at ement . get Consi st encylLevel ());
st at enent . set Consi st encylLevel (Consi st encylLevel . ONE) ;
Systemout.printf("New consistency |evel = %\n",
st at enent . get Consi stencylLevel ());
for (Row row : getSession().execute(statenent))
Systemout.printf("% %\n", rowgetString("artist"),
row. getint("title"));

/'l setting the fetch size on a statenent
/1l the follow ng SELECT statenent returns over 5K results
statement = new Sinpl eSt at enent (" SELECT * FROM | exi con. concor dance; ") ;
statenment . set Fet chSi ze(100) ;
results = getSession().execute(statenent);
for (Rowrow : results)
Systemout.printf("%: %\ n", row getString("word"),
row. getlnt ("occurrences"));

Building dynamic queries programmatically with the Quer yBui | der API

Overview of the Quer yBui | der API

The Quer yBui | der API allows you to create dynamic CQL queries programmatically. The

Quer yBui | der API encapsulates the syntax of CQL queries, providing classes and methods to construct
and execute queries without having to write CQL. This is more secure, as the queries are not subject to
injection attacks.

The Quer yBui | der API classes are located in the com dat ast ax. dri ver. core. querybui |l der
package.

Creating a query using the Quer yBui | der API

To create a query, create a com dat ast ax. dri ver. core. St at enent object by calling one of the
com dat ast ax. dri ver. core. querybui |l der. Quer yBui | der methods. These methods return
subclasses of St at enent .

Table 5: QueryBuilder methods

Method Description

Quer yBui | der. sel ect Equivalent to the CQL SELECT statement. Returns
a Sel ect object.

QueryBui | der.insert Equivalent to the CQL | NSERT statement. Returns
an | nsert object.

Quer yBui | der . updat e Equivalent to the CQL UPDATE statement. Returns
an Updat e object.

Quer yBui | der . del ete Equivalent to the CQL DELETE statement. Returns
a Del et e object.

The St at ement object can then be configured with the conditions of the query.

For example, the following line returns a Sel ect object for a particular keyspace and table.

Sel ect select = QueryBuil der.select().from "keyspace nane", "table_ nane");

Java driver reference

The statement can then be executed similar to a hand-coded CQL query string using a Sessi on
instance's execut e method, with the results returned as a Resul t Set object.

Cluster cluster = Custer. builder()
. addCont act Poi nt ("Il ocal host™")
Lbuild();
Session session = cluster.connect();
Sel ect select = QueryBuil der. sel ect()

Lall ()
from("nmusic", "playlist");
Resul t Set results = session. execut e(sel ect);

Setting query options on St at enent instances

St at enent objects represent a particular query. The Statement class has methods that allow you to set
query options such as the consistency level, tracing options, fetch size, or the retry policy of the query.

To enable tracing on the query, call St at enent . enabl eTraci ng() . St at enent . di sabl eTr aci ng()
disables tracing of the query.

The consistency level of the query can be set by calling St at enent . set Consi st encyLevel () and
setting it to one of the enums of com dat ast ax. dri ver. cor e. Consi st encyLevel , which correspond
to the consistency levels of Cassandra.

Statenent statenent = ...
st at ement . set Consi st encyLevel (Consi st encylLevel . LOCAL_QUORUM ;

The serial consistency level of the query, set with St at enent . set Seri al Consi st encylLevel (), is
similar to the consistency level, but only used in queries that have conditional updates. That is, it is only
used in queries that have the equivalent of the | F condition in CQL.

The fetch size, or number of rows returned simultaneously by a select query, can be controlled by calling
Sel ect . set Fet chSi ze() and passing in the number of rows.

Sel ect statenent = ...
statenent. set Fet chSi ze(100) ;

Setting the fetch size is typically needed when queries return extremely large numbers of rows. Setting the
fetch size to small values is discouraged, as it results in poor performance.

To disable paging of the results, set the fetch size to | nt eger . MAX_VALUE. If the fetch size is set to a
value less than or equal to 0, the default fetch size will be used.

The retry policy defines the default behavior of queries when they encounter a Ti neout Excepti on or
Unavai | abl eExcept i on. If not explicitly set, the retry policy is set to the default retry policy for the target
cluster, returned by calling Pol i ci es. get Ret ryPol i cy() in the cluster configuration. To explicitly set
the retry policy, call St at ement . set RetryPol i cy() and passing in one of the classes that implement
com dat ast ax. dri ver.core.policies.RetryPolicy.

Table 6: Retry policies

Retry policy Description

Def aul t Ret ryPol i cy The query will be retried for read requests if enough
replica nodes replied but no data was retrieved, or
on write requests if there is a timeout while writing
the distributed log used by batch statements.

Downgr adi ngConsi st encyRet ryPol i cy The query may be retried with a lower consistency
level than the one initially requested. This policy
will retry queries in the same circumstances

27

/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
/en/drivers/java/2.0/com/datastax/driver/core/policies/DefaultRetryPolicy.html
/en/drivers/java/2.0/com/datastax/driver/core/policies/DowngradingConsistencyRetryPolicy.html

Java driver reference

28

Retry policy

Description

as Def aul t RetryPol i cy, as well as a few
other cases. For a read request, if the number

of replica nodes is more than one but lower than
the number required by the consistency level,

the query is rerun with the lower consistency
level. For write requests, if the write type is
WiteType. UNLOGGED BATCH and at least one
replica node acknowledged the write, the query is
retried at the lower consistency level. If the query
fails due to an Unavai | abl eExcepti on, and at
least one replica node is available, the query is
retried at the lower consistency level.

Fal | t hr oughRet ryPol i cy

This policy does not retry queries, but allows the
client business logic to implement retries.

Loggi ngRet ryPol i cy

This policy allows you to wrap other retry policies in
order to log the decision of the policy.

Query builder examples

The query builder class helps to create executable CQL statements dynamically without resorting to

building query strings by hand.

Select all example

Here is an example that creates a select all statement from the specified schema and returns all the rows.

public List<Row> getRows(String keyspace, String table) {

St at ement st at ement
.select()
Lall ()
.from(keyspace,
return get Session()

. execut e(statement)

Lallh();

Select particular rows example

= QueryBui | der

This example selects all rows that match some conditions.

Sel ect select = QueryBuil der.select()

Lall()
.distinct()

.from("addr essbhook",

"contact")
.where(eq("type", "Friend"))
.and(eq("city", "San Francisco"));

Resul t Set results = session. execute(select);

Insert example

This example demonstrates how to insert data into a row.

Insert insert = QueryBuil der
.insertlnto("addressbook",

"contact")

/en/drivers/java/2.0/com/datastax/driver/core/policies/FallthroughRetryPolicy.html
/en/drivers/java/2.0/com/datastax/driver/core/policies/LoggingRetryPolicy.html

Java driver reference

.value("firstNanme", "Dwayne")
.val ue("l ast Name", "Garcia")
.value("enmi | ", "dwayne@xanpl e.coni;
Resul t Set results = session. execute(insert);

Update example

This example demonstrates how to update the data in a particular row.

Updat e update = QueryBuil der. updat e("addressbook", "contact")
.wWith(set("enmail", "dwayne.garci a@xanpl e.cont)
.where(eq("usernane", "dgarcia"));

Resul t Set results = session. execut e(update);

Delete example

This example demonstrates how to delete a particular row.

Del ete del ete = QueryBuil der. del ete()

.from("addresbook”, "contact")
. where(eq("usernane", "dgarcia"));
Debugging

Various options for debugging your client application.
You have several options to help in debugging your application.
On the client side, you can:

e use the Eclipse debugger
¢ monitor different metrics

e some by default
e others by implementing your own metric objects
e log using a SLF4J-compliant logging library

On the server side, you can:

e enable tracing
» adjusting the log4j configuration for finer logging granularity

If you are using DataStax Enterprise, you can store the log4j messages into a Cassandra cluster.

Exceptions
Handling exceptions.

Overview

Many of the exceptions for the Java driver are runtime exceptions, meaning that you do not have to
wrap your driver-specific code in try/catch blocks or declared thrown exceptions as part of your method
signatures.

29

/en/datastax_enterprise/4.5/datastax_enterprise/reference/refDseintegLog4j.html?scroll=integLog4j__integLog4jMsg

Java driver reference

Example

The code in this listing illustrates catching the various exceptions thrown by a call to execute on a session

object.

public void querySchema() {

Statenent statenent =

"I NSERT | NTO si npl ex. songs " +
"(id, title, album artist)

new Si npl eSt at enent (

+

"VALUES (da7c6910- ab6a4- 11e2-96a9- 4db56cdc5fe7, " +

"' ol den Brown',
"))
try {

'"La Folie',

"The Stranglers'" +

get Sessi on() . execut e(statenent);
} catch (NoHost Avai |l abl eException e) {

System out. printf("No host
execute the query.\n",
get Session().getCl uster());

in the % cluster can be contacted to

} catch (QueryExecuti onException e) {
Systemout.println("An exception was thrown by Cassandra because it

cannot " +

"successfully execute the query with the specified consistency

| evel .");

} catch (QueryValidati onException e) {

Systemout.printf("The query % \nis not valid,

i ncorrect syntax.\n",
statenent. get QueryString());

for exanple,

} catch (111l egal StateException e) {

System out. println("The BoundSt at enent

}
}

Monitoring
The Java driver uses the Metrics library (and JMX) to allow for monitoring of your client application.

30

Description
The following links are for your reference:

Metrics library
Java Management Extensions (JMX)

The Metrics object exposes the following metrics:

Table 7: Metrics

is not ready.");

Metric

Description

connectedToHosts

A gauge that presents the number of hosts that are
currently connected to (at least once).

errorMetrics

An Error.Metrics object which groups errors which
have occurred.

knownHosts

A gauge that presents the number of nodes known
by the driver, regardless of whether they are
currently up or down).

openConnections

A gauge that presents the total number of
connections to nodes.

http://metrics.codahale.com/
http://docs.oracle.com/javase/tutorial/jmx/index.html

Java driver reference

Metric Description
requestsTimer A timer that presents metrics on requests executed
by the user.

In addition, you can register your own Metrics objects by extending the
com codahal e. netri cs. Met ri c interface and registering it with the metric registry. Metrics are
enabled by default, but you can also disable them.

Examples

You retrieve the metrics object from your cluster.

public void printMetrics() {
Systemout.println("Metrics");
Metrics netrics = getSession().getCluster().getMetrics();
Gauge<I nt eger > gauge = netrics. get Connect edToHost s();
I nt eger nunber Of Hosts = gauge. val ue();
System out. printf("Nunber of hosts: %l\n", nunber O Hosts);
Metrics.Errors errors = netrics.getErrorMetrics();
Counter counter = errors.getReadTi neouts();
System out. printf("Nunmber of read tinmeouts: %l\n", counter.count());
Timer timer = netrics. get RequestsTimer();
Ti mer. Context context = tiner.tine();
try {
| ong nunber User Requests = tiner. get Count();
System out. printf("Nunber of user requests: %\ n",
nunber User Request s) ;

} finally {
cont ext.stop();
}

}

You can create and register your own Metrics objects:

public void createNunberlnsertsGauge() {
Metric ourMetric = get Session()
.getd uster()
.getMetrics()
.getRegi stry()
.getMetrics()
.get(MetricRegistry. nane(getd ass(), "nunberlnserts"));
System out . printf("Nunber of insert statenents executed: %bd\n",
((Gauge<?>) ourMetric).value());
}

The Metrics library exposes its metrics objects as JMX managed beans (MBeans). You can gather metrics
from your client application from another application for reporting purposes. This example presumes that a
user-defined metric has been registered by the client as in the previous example.

public void connect MBeanServer () {
try {
JMXSer vi ceURL url
rm://:9999/jmkrm");
JMXConnect or jnkc = JMXConnect or Factory. connect (url, null);
MBeanSer ver Connecti on nmbsConnection = jnxc. get MBeanSer ver Connecti on();
hj ect Nane obj ect Nane = new Obj ect Name("cluster1-nmetrics:" +
"name=com exanpl e. cassandr a. Met ri csExanpl e. nunber | nserts");

new JMXServi ceURL("service:jnmx:rm:///]jndi/

31

Java driver reference

JnxGaugeMBean nBean = JMX. new\BeanPr oxy(nbsConnecti on, object Nane,
JnmxGaugeMBean. cl ass) ;
Systemout. printf("Nunber of inserts: %d\n", nBean.getValue());
} catch (Mal formredURLException nue) {
nmue. print StackTrace();
} catch (1 CException ioe) {
i oe. printStackTrace();
} catch (Null Poi nter Exception npe) {
npe. print StackTrace();
}

}

When running the previous example, you must pass the following properties to the JVM running your client
application:

- Dcom sun. managenent . j nxr enot e. port =9999 \
- Dcom sun. managenent . j nxr enot e. aut henti cat e=fal se \
- Dcom sun. managenent . j nxr enot e. ssl =f al se

Enabling tracing

To help you to understand how Cassandra functions when executing statements, you enable tracing.

About this task

Tracing is only enabled on a per-query basis. The sample client described here extends the SimpleClient
class and then enables tracing on two queries: an INSERT of data and a SELECT that returns all the rows
in a table.

Procedure

1. Add a new class, TracingExample, to your simple-cassandra-client project. It should extend the
SimpleClient class.

package com exanpl e. cassandr a;

public class Traci ngExanpl e extends Sinpledient {
}

2. Add an instance method, tracelnsert and implement it.
a) Build an INSERT query and enable tracing on it.

/* I NSERT | NTO si npl ex. songs

* (id, title, album artist)

* VALUES (da7c6910- ab6a4d- 11e2-96a9- 4db56cdc5f e7,

* 'CGolden Brown', 'La Folie', 'The Stranglers'

*)’

*/

Statenment insert = QueryBuilder.insertlnto("sinplex", "songs")

.value("id", UUI D.randomu X))
.value("title", "Golden Brown")
.val ue("al bum', "La Folie")
.value("artist", "The Strangl ers")

. set Consi st encyLevel (Consi st encyLevel . ONE) . enabl eTraci ng() ;

The code illustrates using the QueryBuilder class and method chaining.

Java driver reference
b) Execute the INSERT query and retrieve the execution tracing information.

Resul t Set results = get Session().execute(insert);
Executionl nfo executionlnfo = results. get Executionlnfo();

¢) Print out the information retrieved.

Systemout.printf("Host (queried): %\n",
executionl nfo. get Queri edHost ().toString());
for (Host host : executionlnfo.getTriedHosts()) {
Systemout.printf("Host (tried): %\n", host.toString());
}

QueryTrace queryTrace = executionlnfo.getQeryTrace();

Systemout.printf("Trace id: %\n\n", queryTrace.getTraceld());
Systemout.printin("-----------------““---- oo
S S o mem e o S S ");

for (QueryTrace. Event event : queryTrace. getEvents()) {
Systemout.printf("%88s | %2s | %40s | %d2s\n",
event . get Descri ption(),
mllis2Date(event. get Ti nestanp()),
event . get Source(), event.get SourceEl apsedM cros());

}

The code prints out information similar to that which cqlsh does when tracing has been enabled. The
difference is that in cqlsh tracing is enabled and all subsequent queries prints out tracing information.
In the Java driver, a session is basically stateless with respect to tracing which must be enabled on a
per-query basis.

d) Implement a private instance method to format the timestamp to be human-readable.

private SinpleDateFormat format = new
Si npl eDat eFor mat (" HH: mm ss. SSS") ;

private hject mllis2Date(long tinmestanp) {
return format.format(timestanp);
}

3. Add another instance method, traceSelect, and implement it.

public void traceSelect() {

Statenment scan = new Si npl eSt at enent (" SELECT * FROM

si mpl ex. songs; ") ;
Executionl nfo executionlnfo =

get Sessi on() . execut e(scan. enabl eTraci ng()) . get Executi onl nfo();
Systemout.printf("Host (queried): %\n",

executionl nfo. getQueriedHost ().toString());
for (Host host : executionlnfo.getTriedHosts()) {

Systemout.printf("Host (tried): %\n", host.toString());

}

QueryTrace queryTrace = executionlnfo.getQeryTrace();
Systemout.printf("Trace id: %\n\n", queryTrace.getTraceld());
Systemout.printf("%38s | %12s | % 10s | % 12s\n", "activity",

"timestanp”, "source", "source_el apsed");
Systemout.println("-----------mmm oo
e e e ");

for (QueryTrace. Event event : queryTrace. getEvents()) {
Systemout.printf("%88s | %d2s | %0s | %2s\n",
event . get Description(),

mllis2Date(event.getTi nestanp()),

33

Java driver reference

event . get Source(), event. get SourceEl apsedM cros());

scan. di sabl eTraci ng();

}

Instead of using QueryBuilder, this code uses SimpleStatement.
4. Add a class method main and implement it.

public static void nmain(String[] args) {
Traci ngExanpl e client = new Traci ngExanpl e();
client.connect("127.0.0.1");
client.createSchema();
client.tracelnsert();
client.traceSel ect();
client.reset Schema();
client.close();

Code listing
Complete code listing which illustrates:
» Enabling tracing on:

* INSERT
* SELECT
* Retrieving execution information and printing it out.

package com exanpl e. cassandr a;

i mport java.text. Sinpl eDat eFor nat ;
import java.util.UU D

i nport com dat ast ax. driver. core. Consi stencylLevel ;

i mport com dat ast ax. dri ver. core. Executi onl nfo;

i mport com dat astax. driver.core. Host;

i mport com dat astax. driver.core. QueryTrace;

i mport com dat astax. driver.core. Result Set;

i mport com dat ast ax. driver. core. Si npl eSt at enent ;

i mport com dat astax. driver.core. Statenent;

i mport com dat ast ax. driver. core. querybuil der. QueryBui |l der;

public class Traci ngExanpl e extends Sinpledient {
private SinpleDateFormat format = new Sinpl eDat eFor mat (" HH: mm ss. SSS*) ;

public Traci ngExanpl e() {
}

public void tracelnsert() {
/* I NSERT | NTO si npl ex. songs

* (id, title, album artist)
* VALUES (da7c6910- a6a4- 11e2-96a9- 4db56cdc5f e7,
* 'CGol den Brown', 'La Folie', 'The Stranglers'
*),
*/
Statement insert = QueryBuilder.insertlnto("sinplex", "songs")
.value("id", UU D.randonJul D))
.value("title", "Golden Brown")
.val ue("al bunt, "La Folie")
.value("artist", "The Stranglers")

34

Java driver reference

. set Consi st encyLevel (Consi stencyLevel . ONE) . enabl eTraci ng();
Resul t Set results = get Session().execute(insert);
Executionl nfo executionlnfo = results. get Executionlnfo();
Systemout.printf("Host (queried): %\n"
executionl nfo. get QueriedHost().toString());
for (Host host : executionlnfo.getTriedHosts())
Systemout.printf("Host (tried): %\n", host.toString());
}

QueryTrace queryTrace = executionlnfo.getQeryTrace();
Systemout.printf("Trace id: %\n\n", queryTrace.getTraceld());
Systemout.printf("%38s | %12s | % 10s | % 12s\n", "activity",

"timestanp", "source", "source_el apsed");
Systemout . println("--------mmmm
. e e . ");

for (QueryTrace. Event event : queryTrace. getEvents()) {
Systemout.printf("9%88s | %2s | %0s | %2s\n",
event . get Descri ption(),
m | 1is2Date(event.getTi nestanp()),
event . get Source(), event.get SourceEl apsedM cros());

i nsert.di sabl eTraci ng();

}

public void traceSelect() {

Statenment scan = new Si npl eSt at enent (" SELECT * FROM si npl ex. songs; ") ;
Executionl nfo executionlnfo =

get Sessi on() . execut e(scan. enabl eTraci ng()). get Executi onl nfo();
Systemout.printf("Host (queried): %\n"

executionl nfo. getQueriedHost().toString());
for (Host host : executionlnfo.getTriedHosts()) {

Systemout.printf("Host (tried): %\n", host.toString());

}

QueryTrace queryTrace = executionlnfo.getQeryTrace();
Systemout.printf("Trace id: %\n\n", queryTrace.getTraceld());
Systemout.printf("%38s | %12s | % 10s | % 12s\n", "activity",

"timestanp", "source", "source_el apsed");
Systemout . println("------c-mmmm
______________ +____________+______________")-

for (QueryTrace. Event event : queryTrace. getEvents()) {
Systemout.printf("9%88s | %2s | %0s | %2s\n",
event . get Descri ption(),
ml1is2Date(event.getTi nestanp()),
event . get Source(), event.get SourceEl apsedM cros());

scan. di sabl eTraci ng() ;

}

private hject mllis2Date(long tinmestanp) {
return format.format(tinmestanp);
}

public static void nmain(String[] args) {
Traci ngExanpl e client = new Traci ngExanpl e();
client.connect("127.0.0.1");
client.createSchenma();
client.tracelnsert();
client.traceSel ect();
client.close();

35

Java driver reference

Output:

Connected to cluster: xerxes

Si mpl ex keyspace and schena created.

Host (queried): /127.0.0.1

Host (tried): /127.0.0.1

Trace id: 96ac9400- a3ab-11e2-96a9- 4db56¢cdc5f e7

activity | tinmestanp | source
source_el apsed
_______________________________________ o o oo
oo
Parsing statenent | 12:17:16.736 | /127.0.0.1
2 Peparing statenment | 12:17:16.736 | /127.0.0.1
199Eeternining replicas for nutation | 12:17:16.736 | /127.0.0.1
48 Sendi ng nessage to /127.0.0.3 | 12:17:16.736 | /127.0.0.1
o8 Sendi ng nessage to /127.0.0.2 | 12:17:16.736 | /127.0.0.1
000 Acquiring sw tchLock read lock | 12:17:16.736 | /127.0.0.1
028 Appending to commtlog | 12:17:16.736 | /127.0.0.1
o4 Adding to songs nmentable | 12:17:16.736 | /127.0.0.1
200 Message received from/127.0.0.1 | 12:17:16.737 | /127.0.0.2
> Message received from/127.0.0.1 | 12:17:16.737 | /127.0.0.3
2 Acquiring sw tchLock read lock | 12:17:16.737 | /127.0.0.2
o7 Acquiring sw tchLock read lock | 12:17:16.737 | /127.0.0.3
o2 Appending to commtlog | 12:17:16.737 | /127.0.0.2
0% Appending to commtlog | 12:17:16.737 | /127.0.0.3
> Adding to songs nmentable | 12:17:16.737 | /127.0.0.2
s Adding to songs nentable | 12:17:16.737 | /127.0.0.3
o8 Enqueui ng response to /127.0.0.1 | 12:17:16.737 | /127.0.0.3
ot Enqueui ng response to /127.0.0.1 | 12:17:16.738 | /127.0.0.2
250 Message received from/127.0.0.3 | 12:17:16.738 | /127.0.0.1
e Sendi ng nessage to /127.0.0.1 | 12:17:16.738 | /127.0.0.2
189 Message received from/127.0.0.2 | 12:17:16.738 | /127.0.0.1
2é?ocessing response from/127.0.0.3 | 12:17:16.738 | /127.0.0.1
Zggocessing response from/127.0.0.2 | 12:17:16.738 | /127.0.0.1

Connected to cluster: xerxes
Host (queried): /127.0.0.3

36

Host (tried): /127.0.0.3

Trace id: da7c6910-a6a4-11e2-96a9- 4db56c¢cdchfe7

activity
sour ce_el apsed

deme e me e e

Par si ng st at enent

35
Pepari ng statenent

191
Determ ning replicas to query

342
Sendi ng nmessage to /127.0.0.2

1561
Message received from/127.0.0.3

37
Message received from/127.0.0.2

2880

Executing seq scan across 0 sstables
for [mn(-9223372036854775808),
m n(-9223372036854775808)]
580
Scanned 0 rows and mat ched
648

670

Sendi ng nessage to /127.0.0.

767

Processi ng response from/127.0.0.
3237

0
Enqueui ng response to /127.0.0.3
3
2

Enabling debug-level logging

The driver uses the Simple Logging Facade for Java (SLF4J) which works with most common logging
frameworks such as Apache Log4j and logback. Enabling debugging depends on which framework your
application uses. For example, if your driver client application uses Log4j, you enable debugging for the
driver by adding the following to your driver client | og4j . properti es file:

L

The DEBUG messages that result have additional information such as what contact points are used, what
nodes were found, what nodes can and cannot be connected to, etc.

| og4j .1 ogger.com dat ast ax. dri ver =DEBUG

ogging example

About this task

The following example uses the Si npl eCl i ent application you developed in the Writing your first client
tutorial. It uses the Log4j library and configures it so that the driver logs DEBUG messages, while the

| tinestanp

| 12:
| 12:
| 12:

| 12:

| 12:

Si mpl ed i ent application logs only INFO messages.

Procedure

1.
2.

Open the si npl e- cl i ent project in Eclipse.

The Add Dependency dialog displays.
b) Enter sl f4j-10g4j 12 in the search textfield.

1 49:
49:
49:
49:
49:
1 49:

1 49:
1 49:
49:
1 49:
1 49:

Add the sl f 4] -1 og4j 12 JAR file as a Maven dependency.
a) Right-click on the si npl e-cl i ent project node and select Maven > Add Dependency > .

34.
34.
34.
34.
34.
34.

34.
34.
34.
34.
34.

497
497
497
498
499
499

499
499
499
499
500

/127.
/127.
/127.
/127.
/127.
/127.

/127.
/127.
/127.
/127.
/127.

Java driver reference

°e 2 2o o ©
°e 2o o o ©
w NN NN

37

http://www.slf4j.org/
http://logging.apache.org/log4j/2.x/
http://logback.qos.ch/

Java driver reference

38

c) Expand the or g. apache. di rect ory. st udi o node and choose 1.7.2 [jar].
d) Click OK to dismiss the dialog.

. Add a Log4j configuration file to the project.

a) Right-click on the src/ mai n/ r esour ces directory node in the package explorer and select New >
File.
The New File dialog displays.

b) Enter | og4j . properti es in the File name textfield.

¢) Configure Log4j to turn on debug-level logging for the driver and information-level logging for the
Si npl ed i ent application.

| og4j .1 ogger.com dat ast ax. dri ver =DEBUG, Al
| og4j . appender . Al=or g. apache. | og4j . Consol eAppender
| og4j . appender. Al. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j .1 ogger.com exanpl e. cassandra. Si npl ed i ent =I NFO, A2
| og4j . appender . A2=or g. apache. | og4j . Consol eAppender
| og4j . appender. A2. | ayout =or g. apache. | og4j . Pat t er nLayout

d) Save the properties file.

The Log4j library looks for a | og4j . xm or | og4j . properti es file on the classpath. Files stored in
src/ mai n/ r esour ces directory are automatically included on the project's classpath.

. Runthe Si npl edl i ent application.

com dat ast ax. dri ver. NEW NODE_DELAY_SECONDS i s undefined, using default val ue
1
com dat ast ax. dri ver. NON_BLOCKI NG_EXECUTOR_SI ZE i s undefined, using default
val ue 4
com dat ast ax. dri ver. NOTI F_LOCK _TI MEOQUT_SECONDS i s undefined, using default
val ue 60
Cannot find Snappy cl ass, you shoul d nake sure the Snappy library is in the
classpath if you intend to use it. Snappy conpression will not be avail able
for the protocol
Cannot find LZ4 class, you should make sure the LZ4 library is in the
classpath if you intend to use it. LZ4 conpression will not be available
for the protocol
Starting new cluster with contact points [/127.0.0. 1:9042]
Connection[/127.0.0.1:9042-1, inFlight=0, closed=false] Transport
initialized and ready
[Control connection] Refreshing node |list and token map
[Control connection] Refreshing schema
[Control connection] Refreshing node list and token map
[Control connection] Successfully connected to /127.0.0.1:9042
Usi ng dat a-center nane 'datacenterl’ for DCAwar eRoundRobi nPolicy (if
this is incorrect, please provide the correct datacenter name wth
DCAwar eRoundRobi nPol i cy constructor)
New Cassandra host /127.0.0.3:9042 added
New Cassandra host /127.0.0.2:9042 added
New Cassandra host /127.0.0.1:9042 added
New Cassandra host /127.0.0.4:9042 added
Connected to cluster: darius
Connection[/127.0.0.1:9042-2, inFlight=0, closed=false] Transport
initialized and ready

Recei ved event EVENT DROPPED TABLE si npl ex. songs, scheduling delivery
Recei ved event EVENT DROPPED TABLE si npl ex. pl aylists, scheduling delivery
Recei ved event EVENT DROPPED KEYSPACE si mpl ex, scheduling delivery

Fi ni shed droppi ng sinpl ex keyspace.

Connection[/127.0.0.3:9042-1, inFlight=0, closed=true] closing connection
Connection[/127.0.0.2:9042-1, inFlight=0, closed=true] closing connection
Connection[/127.0.0. 1:9042-2, inFlight=0, closed=true] closing connection

Java driver reference

Connection[/127.0.0.4:9042-1, inFlight=0, closed=true] closing connection
Shutting down
Connection[/127.0.0.1:9042-1, inFlight=0, closed=true] closing connection

Node discovery

The Java driver automatically discovers and uses all of the nodes in a Cassandra cluster, including newly
bootstrapped ones.

Description

The driver discovers the nodes that constitute a cluster by querying the contact points used in building the
cluster object. After this it is up to the cluster's load balancing policy to keep track of node events (that is
add, down, remove, or up) by its implementation of the Host.StateListener interface.

Object-mapping API
Map table data to objects.

A common use case in Java applications is to transform query results into custom Java classes modeling
domain objects. The new object-mapping API is distributed in the cassandr a- dri ver - mappi ng JAR
file. To use the object-mapping API, you must add the cassandr a- dri ver - mappi ng JAR to your
classpath or as a Maven dependency.

Version 2.1 of the driver introduces a new object mapping API with the following features:

Basic CRUD operations

Using specially annotated Java POJOs allows your application to perform basic CRUD operations (for
example, save, delete and simple get) with the Mapper class.

For example:

CREATE TYPE conpl ex. address (
street text,
city text,
zi pCode i nt,
phones |i st <text>

CREATE TABLE conpl ex. accounts (
emai | text PRI MARY KEY,

nanme text,
addr frozen<address>

)

You annotate the Java class with Tabl e, passing in the required elements specifying the keyspace and
the table name. As long as the object's fields and the table's column's have the same name, you do

not need any further annotations. The emai | column which is the primary key for the accounts table is
annotated with Par ti ti onKey.

package com exanpl e. cassandr a;

i mport com dat ast ax. dri ver. mappi ng. annot ati ons. Col um;

i mport com dat ast ax. dri ver. mappi ng. annot ati ons. Frozen;

i mport com dat ast ax. dri ver. mappi ng. annotati ons. Partiti onKey;
i mport com dat ast ax. dri ver. mappi ng. annot ati ons. Tabl e;

39

Java driver reference

i nport com googl e. common. base. Cbj ect s;

@abl e(keyspace = "conpl ex", nane = "accounts")
public class Account {

@rartitionKey

private String email;

private String namne;

@Col um (name = "addr")

@rozen

private Address address;

public Account () {

}

public Account(String nanme, String enail, Address address) {
thi s. nane = nane;
this.email = emuil;
thi s. address = address;

}

public String getName() {
return nane;
}

public void setNanme(String nanme) {
this. nanme = nane;
}

public String getEmail () {
return email;

}

public void setEnmail (String email) {
this.emai|l = email;

}

public Address get Address() {
return address;
}

public void set Address(Address address) {
this. address = address;
}

@verride
public bool ean equal s(Obj ect other) {
if (other instanceof Account) {
Account that = (Account) ot her;
return Objects. equal (this.name, that.nane) &&
bj ects.equal (this.email, that.emil);

return fal se;

}

@verride
public int hashCode() {

return Obj ects. hashCode(nane, enunil);
}

}

Using a Mapper instance, you can perform basic CRUD operations on your object.

40

Java driver reference

Mapper <Account > mapper = new
Mappi ngManager (get Sessi on()) . mapper (Account . cl ass);

Phone phone = new Phone("home", "707-555-3537");

Li st <Phone> phones = new ArraylLi st <Phone>();

phones. add(phone) ;

Addr ess address = new Address("25800 Arnold Drive", "Sonoma", 95476,
phones) ;

Account account = new Account ("John Doe", "jd@xanple.cont, address);

mapper. save(account);

Account whose = mapper.get ("jd@xanple.cont);

System out. println("Account nane: " + whose. get Name());

mapper . del et e(account);

The Mapper object also has an asynchronous get method that returns a
com googl e. cormon. uti | . concurrent. Li st enabl eFut ur e<T>.

Li st enabl eFut ur e<User > user Fut ure = nmapper. get Async(userld);
Li st enabl eFut ur e<Voi d> saveFut ure = nmapper.saveAsync(user);
Li st enabl eFut ur e<Voi d> del et eAsync(userld);

Field-column mismatches

If an object's field has a different name from the corresponding column, you must annotate it, specifying
the name. For example:

private int zipCode;

@ol um(nanme = "zip_code")

public int getZ pCode() {
return zi pCode;

}

The Transient annotation

To prevent a field from being mapped, use the Tr ansi ent annotation.

CREATE TABLE conpl ex. mi nuscul es (
nanme text PRI MARY KEY,
size int

)

@abl e(keyspace = "conpl ex", nane = "m nuscul es")
public class Little {

@artiti onKey

private String nane;

@ ansi ent

private String secret;

private int size;

/'l etc.

41

Java driver reference

The Enumerated annotation

If your class contains an enum type field, you use the Enuner at ed annotation.

enum Gender { FEMALE, MALE };
/1

/'l FENMALE will be persisted as ' FEMALE
@nurrer at ed(Enumlype. STRI NG
private Gender gender;

/1 FEMALE will be persisted as 0, MALE as 1
@nuner at ed(Enunmlype. ORDI NAL)
private Gender gender

Mapping UDTs

In your application, you can map your UDTs to application entities. For example, given the following UDT:

CREATE TYPE conpl ex. addr ess (
street text,
city text,
zi pCode i nt,
phones |i st<text>

)

You create a Java class to map it to and annotate:

@JDT (keyspace = "conplex", nane = "address")
public class Address {

private String street;

private String city;

private int zipCode;

private List<Phone> phones;

public Address() {
}

public String getStreet() {
return street;
}

public void setStreet(String street) {
this.street = street;
}

public String getGty() {
return city;
}

public void setCity(String city) {
this.city = city;
}

public int getZi pCode() {
return zi pCode;
}

42

Java driver reference

public void setZi pCode(int zipCode) {
this.zi pCode = zi pCode;
}

public Li st <Phone> get Phones() {
return phones;
}

public void setPhones(List<Phone> phones) {
t hi s. phones = phones;
}

}

You map the UDT to its corresponding Java class:

UDTMapper <Addr ess> mapper = new Mappi ngManager (get Sessi on())
. udt Mapper (Addr ess. cl ass);

Once you have a mapper instance, you use it during your application's lifetime. When you retrieve a a
column of your UDT from a result set, it is an instance of UDTVal ue. You use your mapper to map it to
your class.

Resul t Set results = get Session().execute("SELECT * FROM conpl ex. users " +
"WHERE id = 756716f 7- 2e54- 4715- 9f 00- 91dcbeabcf 50; ") ;
for (Rowrow : results) {
System out. println(row getString("nane"));
Map<String, UDTVal ue> addresses = row. get Map("addresses", String.class,
UDTVal ue. cl ass);
for (String key : addresses. keySet()) {
Addr ess address = mapper. fromJDT(addr esses. get (key));
Systemout.println(key + " address: " + address);
}
}

CQL column and Java class fields mismatch

For the automatic mapping to work, the table column names and the class properties must match (case
does not count). For example, in the UDT and the Java class examples aboved were changed:

CREATE TYPE address (
street text,
city text,
zi p_code int,
phones |i st<text>

)

You use the Field annotation to provide the name of the field in your Java class that differs from that in
your UDT:

public class Address {
/1 all other fields and their getters and setters the sane as above
@ield (nane = "zip_code")
private int zipCode;

public int getZi pCode() {
return zi pCode;
}

43

Java driver reference

public void setZi pCode(int zipCode) {
this.zi pCode = zi pCode;
}

}

Accessor-annotated interfaces

44

If you need to use queries that are more complex than CRUD methods, you can use Accessor -annotated
interfaces. The query strings are specific, but most of the boilerplate can still be handled automatically. You
generate an object that implements the interface with the Mappi ngManager .

Query are bound either by name or position.

An example using the User table above:

package com exanpl e. cassandr a;
import java.util.UU D

i mport com dat astax. driver.core. Result Set;

i mport com dat ast ax. driver. mappi ng. Resul t;

i mport com dat ast ax. dri ver. mappi ng. annot ati ons. Accessor;
i mport com dat ast ax. dri ver. mappi ng. annot at i ons. Par am

i mport com dat ast ax. dri ver. mappi ng. annot ati ons. Query;

@\ccessor
public interface UserAccessor {

@uery("SELECT * FROM conpl ex.users WHERE id = :id")
User get User Naned(@ar an{"userld") UU D id);
@uer y("SELECT * FROM conpl ex. users WHERE id = ?")

User get OnePosition(UU D userld);

@uer y("UPDATE conpl ex. users SET addresses|: nane] =: address WHERE i d
=:id")

Resul t Set addAddress(@Paran("id") UU D id, @aran("nane") String
addr essNane, @paran("address") Address address);

@uery("SELECT * FROM conpl ex. users")
public Result<User> getAll();

@uery("SELECT * FROM conpl ex. users")
public Listenabl eFuture<Resul t <User>> get Al | Async();

}

Once you have your accessor written, you create an instance implementing the interface:

Mappi ngManager nmanager = new Mappi ngManager (get Session());
Addr ess address = new Address();
User Accessor user Accessor = manager. creat eAccessor (User Accessor. cl ass);
Resul t <User> users = user Accessor.getAll();
for(User user : users) {
System out . println(user. get Name());
}

Java driver reference

Table 8: Possible return types

Return type Description

T A mapped class. In which case the first row is
mapped.

Resul t Set An | t er abl e<Row> object.

Resul t <T> An | t er abl e<T> object that maps all the rows to
objects.

Li st enabl eFut ur e<R> A Guava future,

com googl e. common. util.concurrent. Li st gnabl eFut ul
of one of the other return types. Returning this type
means the method is asynchronous.

Resul t Set Fut ure Same as Resul t Set , but the query will be
executed asynchronously.

St at enent The method does not execute anything, but returns
a BoundSt at enent ready for execution. This is
useful if you want to add the statement to a batch.

Setting up your Java development environment

If you are not using Maven how to set up your environment.

Java driver dependencies

While the tutorials in this document were written using Eclipse and Maven, you can use any IDE or text
editor and any build tool to develop client applications that use the driver.

The following JAR files and versions are required on your build environment classpath to use the Java
driver:

e cassandra-driver-core-2.1.5.jar
e guava-14.0.1.jar

e netrics-core-3.0.2.jar

e slfdj-api-1.7.10.jar

Tuple types
A tuple is a fixed-length set of typed positional fields.

Cassandra 2.1 introduced the tuple type for CQL. For the following table: A tuple is a fixed-length set of
typed positional fields.

CREATE TABLE tuple_test (
the_key int PRI MARY KEY,
the tuple frozen<tuple<int, text, float>>)

You write to the tuple column in Java like this:

Tupl eType theType = Tupl eType. of (Dat aType. cint (), DataType.text(),
Dat aType. cfloat());
Tupl eVal ue theVal ue = t heType. newval ue();

45

https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained
/en/cql/3.1/cql/cql_reference/tupleType.html

Java driver reference

t heval ue. setlnt (0, 1);

t heval ue. set String (1, "abc");

t heval ue. set Fl oat (2, 1.0f);

get Sessi on() . execute("I NSERT | NTO conpl ex. tupl e_test(the_key, the_tuple)
VALUES (?, ?)", 2, theVal ue);

You read from a tuple column like this:

Prepar edSt at enent preparedSt at enent = sessi on. prepare(" SELECT the_tupl e FROM
compl ex.tuple_test WHERE id = ?");

Row row = get Sessi on(). execut e(preparedSt at enent. bi nd(2)).one();

Tupl eVal ue theVal uel = row. get Tupl eVal ue("the_tuple");

/'l As there are no nanes for tuple fields, access them by position

float theFloat = theVal uel. getFl oat (0);

String theText = theValuel.getString(1);

Tupl eVal ue theVal ue2 = session. execute("SELECT * FROM tupl e_test WHERE
t he_key 2").one().get Tupl evVal ue("t he_tuple");

String s t heval ue2. get String(1);

User-defined types
How UDTs map to Java data types.

Cassandra 2.1 introduces support for User-defined types (UDT). A user-defined type simplifies handling a
group of related properties.

A quick example is a user account table that contains address details described through a set of columns:
street, city, zip code. With the addition of UDTs, you can define this group of properties as a type and
access them as a single entity or separately.

User-defined types are declared at the keyspace level.

UDT API

You access UDTs as you do other metadata from your session instance. For example, given the following
schema:

CREATE KEYSPACE conpl ex
WTH replication = {'class' : 'SinpleStrategy', 'replication_factor'
3}

CREATE TYPE conpl ex. phone (
alias text,
nunber text

)

CREATE TYPE conpl ex. addr ess (
street text,
zi p_code int,
phones |i st <phone>

)

CREATE TABLE conpl ex. users (
idint PRI MARY KEY,
name text,
addr esses frozen<address>

)

46

/en/cql/3.1/cql/cql_reference/cqlRefUDType.html

Java driver reference

UDTs are represented by instances of User Type, and you create new values by using the UDTVal ue
class. Here is an example that uses the schema above.

Prepar edSt at enent i nsert User Prepar edSt at enent
= get Session().prepare("|I NSERT | NTO conpl ex. users (id, name, addresses)
VALUES (?, ?, ?):");
Pr epar edSt at enent sel ect User Prepar edSt at enent
= get Session(). prepare("SELECT * FROM conpl ex.users WHERE id = ?;");

User Type addressUDT = get Session().getd uster()

. get Met adat a() . get Keyspace("conpl ex") . get User Type(" address") ;
User Type phoneUDT = get Session().getd uster()

. get Met adat a() . get Keyspace("conpl ex") . get User Type(" phone");

UDTVal ue phonel = phoneUDT. newval ue()
.setString("alias", "hone")
.set String("nunber", "1-707-555-1234");
UDTVal ue phone2 = phoneUDT. newal ue()
.setString("alias", "work")
.set String("nunmber”, "1-800-555-9876");

UDTVal ue addresses = addressUDT. newval ue()
.setString("street", "123 Arnold Drive")
.setlnt("zip_code", 95476)

.set Li st ("phones", | mutableList.of (phonel, phone2));

Map<String, UDTVal ue> addresses = new HashMap<String, UDTVal ue>();
addr esses. put ("Work", address);

UUI D userld = UUID. fronString("fbdf 82ed-0063-4796-9c7c-a3d4f 47b4bh25");
get Sessi on() . execut e(i nsert User Prepar edSt at enent . bi nd(userld, "G Binary",
addr esses));

Row row =
get Sessi on() . execut e(sel ect User Prepar edSt at enent . bi nd(user1d)). one();
for (UDTVal ue addr : row. get Map("addresses", String.class,
UDTVal ue. cl ass) . val ues()) {
Systemout.println("Zip: " + addr.getlnt("zip_code"));

Direct field manipulation

Reading UDT fields
You can access a field within a UDT from a SELECT statement.

Given the following schema:

CREATE TABLE conpl ex. custoners (
emai | text PRI MARY KEY,
phone_nunber frozen<phone>);

CREATE TYPE conpl ex. phone (
alias text,
nunber text);

You can:

47

Java driver reference

Resul t Set results = get Session()
. execut e(" SELECT phone_nunber. nunber FROM " +

"conpl ex. custoners WHERE enmi | = 'grex@xanple.com ;");
String nunber = results.one().getString("phone_nunber. nunber");
System out. println("Phone nunber: " + nunber);

Writing UDT fields

You can change a field within a UDT from an UPDATE statement.

With the same schema above.

Pr epar edSt at enent prepar edSt at enent = get Sessi on()
. prepar e(" UPDATE conpl ex. custoners SET phone_nunber =" +
"{ number : ? } WHERE emmil = 'grex@xanple.conm ;");
get Sessi on() . execut e(prepar edSt at enent . bi nd("510- 555-1209"));
results = get Session()

.execut e("SELECT * FROM " +

"conpl ex. custoners WHERE enmi | = 'grex@xanple.con;");
UDTVal ue val ue = results.one().getUDTVal ue("phone_nunber");
System out. println("Phone nunber: " + val ue.getString("nunber"));

48

FAQ

« Can | check if a conditional (lightweight transaction) was successful?

e What is a parameterized statement and how can | use it?

» Does a parameterized statement escape parameters?

« What is the difference between a parameterized statement and a Prepared statement?
e Can | combine Prepared statements and normal statements in a batch?

e Can | get the raw bytes of a text column?

» Is there a way to control the batch size of the results returned from a query?

« What's the difference between using set Fet chSi ze() andLIM T?

Can | check if a conditional statement (lightweight transaction) was
successful?

When executing a conditional statements the Resul t Set will contain a single Row with a column named
appl i ed of type bool ean. This tells whether the conditional statement was successful or not:

Resul t Set rset = session.execute(conditional Statenent);
Row row = rset.one(); // if this is true then the statenment was successf ul
r ow. get Bool (0); /1 this is equival ent row. getBool ("applied")

What is a parameterized statement and how can | use it?

Starting with Cassandra 2.0, normal statements (that is non-prepared statement) do not need to
concatenate parameter values inside a query string. Instead you can use ? markers and provide the values
separately:

session. execute("I NSERT I NTO contacts (email, firstname, |astnane)
VALUES (?, ?, ?)", "clint.barton@awkeye.conl, "Barney", "Barton");

Does a parameterized statement escape parameters?

A parameterized statement sends the values of parameters separate from the query (similarly to the way a
Pr epar edSt at enent) as bytes so there is no need to escape parameters.

What's the difference between a parameterized statement and a Prepared
statement?

The only similarity between a parameterized statement and a prepared statement is in the way that the
parameters are sent. The difference is that a prepared statement:

e s already known on the cluster side (it has been compiled and there is an execution plan available for
it) which leads to better performance
e sends only the statement id and its parameters (thus reducing the amount of data sent to the cluster)

49

/en/developer/java-driver/2.1/java-driver/jd-faq.html#faq-conditional-statement
/en/developer/java-driver/2.1/java-driver/jd-faq.html#faq-using-parameterized-statement
/en/developer/java-driver/2.1/java-driver/jd-faq.html#faq-parameterized-statements-escape-parameters
/en/developer/java-driver/2.1/java-driver/jd-faq.html#faq-difference-parametrized-statement-prepared-statement
/en/developer/java-driver/2.1/java-driver/jd-faq.html#faq-combine-statements-batch
/en/developer/java-driver/2.1/java-driver/jd-faq.html#faq-raw-bytes-text-column
/en/developer/java-driver/2.1/java-driver/jd-faq.html#faq-fetch-size
/en/developer/java-driver/2.1/java-driver/jd-faq.html#faq-fetch-size-and-limit
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0

FAQ

Can | combine Prepared statements and normal statements in a batch?

Yes. A batch can include both bound statements and simple statements:

Prepar edSt at enent ps = session. prepare("I NSERT | NTO contacts (emnail,

firstnanme, |astnane)
VALUES (?, ?, ?)"); BatchStatenent batch = new BatchStatenent();

bat ch. add(ps. bind(...));

bat ch. add(ps. bind(...));

/'l here's a sinple statenent

at ch. add(new Si npl eSt atement ("1 NSERT | NTO contacts (enail, firstnane,

| astnane) VALUES (2, 2?2, 2)", ...));
sessi on. execut e(bat ch);

Can | get the raw bytes of a text column?

If you need to access the raw bytes of a text column, call the Row. get Byt esUnsaf e(“ col utmNane”)
method.

Trying to using Row. get Byt es(“ col unmNane”) for the same purpose results in an exception as the
get Byt es method is used to retrieve a BLOB value.

How to increment counters with QueryBuilder?

Considering the following query:

UPDATE clickstream SET clicks = clicks + 1 WHERE userid = id;

To do this using QueryBuilder:

Statement query = QueryBuil der.update("clickstreant)
.with(incr(“clicks”, 1))
/'l Use incr for counters
.where(eq("userid", id));

Is there a way to control the batch size of the results returned from a
query?

Use the set Fet chSi ze() method on your St at enent object. The fetch size controls how many
resulting rows are retrieved simultaneously (the goal being to avoid loading too many results in memory for
queries yielding large result sets).

What's the difference between using setFetchSize() and LIMIT?

Basically, LI M T controls the maximum number of results done on the Cassandra side, while the
set Fet chSi ze() method controls the amount of data transferred between Cassandra and the client.

50

/en/drivers/java/2.1/com/datastax/driver/core/Statement.html#setFetchSize(int)

API reference

DataStax Java Driver for Apache Cassandra.

API reference

51

http://docs.datastax.com/en/drivers/java/2.1/index.html

Tips for using DataStax documentation

Tips for using DataStax documentation

52

Navigating the documents

To navigate, use the table of contents or search in the left navigation bar. Additional controls are:

Hide or display the left navigation.

Go back or forward through the topics as listed in
the table of contents.

Toggle highlighting of search terms.

S Print page.

L See doc tweets and provide feedback.
Grab to adjust the size of the navigation pane.

T Appears on headings for bookmarking. Right-click
the 1 to get the link.

° Toggles the legend for CQL statements and

Other resources

You can find more information and help at:

« Documentation home page
» Datasheets

* Webinars

« Whitepapers

« Developer blogs

e Support

nodetool options.

http://docs.datastax.com/en/index.html
http://www.datastax.com/resources/datasheets
http://www.datastax.com/resources/webinars
http://www.datastax.com/resources/whitepapers
http://www.datastax.com/dev/blog
http://www.datastax.com/what-we-offer/products-services/support

	Contents
	About the Java driver
	Architecture
	The driver and its dependencies

	Writing your first client
	Connecting to a Cassandra cluster
	Using a session to execute CQL statements
	Using bound statements

	Java driver reference
	Four simple rules for coding with the driver
	Asynchronous I/O
	Automatic failover
	BATCH statements
	Cluster configuration
	Tuning policies
	Load balancing policy
	Reconnection policy
	Retry policy

	Connection options
	Protocol options
	Pooling options
	Socket options

	Connection requirements
	CQL data types to Java types
	CQL statements
	Building dynamic queries programmatically with the QueryBuilder API
	Query builder examples

	Debugging
	Exceptions
	Monitoring
	Enabling tracing
	Enabling debug-level logging
	Logging example

	Node discovery
	Object-mapping API
	Basic CRUD operations
	Mapping UDTs
	Accessor-annotated interfaces

	Setting up your Java development environment
	Tuple types
	User-defined types
	UDT API
	Direct field manipulation

	FAQ
	Can I check if a conditional statement (lightweight transaction) was successful?
	What is a parameterized statement and how can I use it?
	Does a parameterized statement escape parameters?
	What's the difference between a parameterized statement and a Prepared statement?
	Can I combine Prepared statements and normal statements in a batch?
	Can I get the raw bytes of a text column?
	How to increment counters with QueryBuilder?
	Is there a way to control the batch size of the results returned from a query?
	What's the difference between using setFetchSize() and LIMIT?

	API reference
	Using the docs

