
Node.js Driver 2.1 for Apache Cassandra
Documentation

${ds.localized.time}

© 2015 DataStax. All rights reserved.

Contents

2

Contents

What's new?... 3

About the Node.js driver...4
The driver and its dependencies.. 4

Writing your first client... 6
Setting up the project..6
Connecting to a Cassandra cluster...7
Executing CQL statements..9

Reference.. 14
Three simple rules for coding with the driver... 14
BATCH statements..15
Client configuration..15

Address resolution.. 16
Client options.. 17
Native protocol..19
Pooling configuration.. 20
Tuning policies..21

Cluster and schema metadata.. 23
CQL data types to JavaScript types... 24

Collections...25
Numerical values.. 27
User-defined types..29
UUID and time-based UUID data types...30
Tuples... 31

Fetching large result sets..32
Parameterized queries.. 33
Routing queries... 34

FAQ..35
Which versions of Cassandra does the driver support?... 35
Which versions of CQL does the driver support?...35
How do I generate a uuid or a timebased uuid?..35
Should I create one client instance per module in my application?..35
Should I shut down the pool after executing a query?... 35

API reference..36

Using the docs...37

What's new?

3

What's new?

Here are the new and noteworthy features of the driver.

What's new in 2.1?

• Support for Cassandra 2.1 features

• user-defined types
• tuples
• nested collections
• native binary protocol version 3

• AddressTranslator interface
• Expose table metadata
• Query tracing

What's new in 2.0?

• Named parameters support
• Improved support for data types

• ECMAScript 6 Map and Set support
• Improved uuid and timeuuid client support
• Improved client support for decimal and varint types

• BATCH of prepared statements
• Heartbeat at connection level: When a connection is idling for some time, it makes a background

request to prevent it being automatically closed by firewalls.

About the Node.js driver

4

About the Node.js driver

The Node.js Driver 2.1 for Apache Cassandra works exclusively with the Cassandra Query Language
(CQL) version 3 and Cassandra's binary protocol which was introduced in Cassandra version 1.2.

Architectural overview

The driver architecture is a layered one. At the bottom lies the driver core. This core handles everything
related to the connections to a Cassandra cluster (for example, connection pool, discovering new nodes,
etc.) and exposes a simple, relatively low-level API on top of which a higher level layer can be built.

The driver has the following features:

• Asynchronous: the driver uses the new CQL binary protocol asynchronous capabilities. Only a relatively
low number of connections per nodes needs to be maintained open to achieve good performance.

• Cassandra trace handling: tracing can be set on a per-query basis and the driver provides a convenient
API to retrieve the trace.

• Configurable load balancing: the driver allows for custom routing and load balancing of queries to
Cassandra nodes. Out of the box, round robin is provided with optional data-center awareness (only
nodes from the local data-center are queried (and have connections maintained to)) and optional token
awareness (that is, the ability to prefer a replica for the query as coordinator).

• Configurable retry policy: a retry policy can be set to define a precise behavior to adopt on query
execution exceptions (for example, timeouts, unavailability). This avoids polluting client code with retry-
related code.

• Convenient schema access: the driver exposes a Cassandra schema in a usable way.
• Node discovery: the driver automatically discovers and uses all nodes of the Cassandra cluster,

including newly bootstrapped ones.
• Paging: both automatic and manual.
• SSL support
• Transparent failover: if Cassandra nodes fail or become unreachable, the driver automatically and

transparently tries other nodes and schedules reconnection to the dead nodes in the background.
• Tunability: the default behavior of the driver can be changed or fine tuned by using tuning policies and

connection options.

The driver and its dependencies
The Node.js driver only supports the Cassandra Binary Protocol and CQL.

Cassandra binary protocol

The driver uses the binary protocol that was introduced in Cassandra 1.2. It only works with a version of
Cassandra greater than or equal to 1.2. Furthermore, the binary protocol server is not started with the
default configuration file in Cassandra 1.2. You must edit the cassandra.yaml file for each node:

start_native_transport: true

Then restart the node.

Cassandra compatibility

The driver is compatible with any Cassandra version from 1.2. The driver uses native protocol version 1
(for Cassandra 1.2), version 2 (Cassandra 2.0), and version 3 (Cassandra 2.1).

About the Node.js driver

5

Build environment dependencies

The driver works with the following versions of Node.js:

• Node.js 0.10

Writing your first client

6

Writing your first client

This section walks you through a small web application that implements a RESTful API and uses the
Node.js driver to connect to a Cassandra cluster, create a schema and load some data, and execute some
queries.

Setting up the project
This tutorial uses Node.js and Express.js to build a simple web application that exposes a REST API to
access data in a Cassandra cluster.

Before you begin

This tutorial uses the following software:

• An installed and running Cassandra or DSE cluster
• Node.js
• npm (Node Packaged Modules)
• cURL

Procedure

1. Install the Express (web application framework) module.

$ npm install -g express

2. Create a stub Express project (called simple) in a directory of your choice.

$ mkdir projects
$ cd projects
$ node express simple

3. Edit and save the project's package.json file to add some information and declare the dependencies.
Changes in bold.

{
 "name": "simple",
 "description": "Simple Cassandra client",
 "version": "0.0.1",
 "private": true,
 "dependencies": {
 "express": "4.9",
 "body-parser": "1.9",
 "async": "0.9.0",
 "cassandra-driver": "1.0.0" }
}

4. Install the dependencies.

$ cd simple
$ npm install

/en/getting_started/doc/getting_started/gsInstallDSE.html
http://cassandra.apache.org/
http://nodejs.org/
https://www.npmjs.org/
http://curl.haxx.se/

Writing your first client

7

Connecting to a Cassandra cluster
The Node.js driver provides a Client class which is your application's entry point for connecting to a
Cassandra cluster and retrieving metadata.

About this task

This tutorial implements a simple REST (representational state transfer) API.

Using a Client object, the client connects to a node in your cluster and then retrieves metadata about the
cluster and prints it out.

Procedure

1. Using a text editor, add the appropriate require statements at the beginning of the server.js file in
the simple project.
These are the modules you installed in the previous object.

var express = require('express');
var bodyParser = require('body-parser');
var cassandra = require('cassandra-driver');

2. Add statements to connect to a node in your Cassandra cluster and set up your web application to use
the express and body-parser modules.

a) Instantiate a Client object and connect to the cluster.

var client = new cassandra.Client({ contactPoints :
 ['127.0.0.1'] });
client.connect(function(err, result) {
 console.log('Connected.');
});

The connect function ensures the pool is connected. It is optional, internally the driver calls
connect when executing a query.

b) Add statements to instantiate an Express web server object, have it use the body-parser module for
handling JSON in HTTP requests and responses, and turn on pretty printing of JSON for readability.

var app = express();
app.use(bodyParser.json());
app.set('json spaces', 2);

3. Register a function and map it to a GET HTTP request URL.

app.get('/metadata', function(req, res) {
 res.send(client.hosts.slice(0).map(function (node) {
 return { address : node.address, rack : node.rack, datacenter :
 node.datacenter }
 }));
});

The GET request returns an array of objects which contain the node IP address, the rack, and the
datacenter. For example:

4. Save the server.js file.

5. Run the server.

https://en.wikipedia.org/wiki/Representational_state_transfer

Writing your first client

8

$ node server.js

A single line is displayed.

Listening on port 3000

6. Call the API using cURL to create the keyspace on the cluster.

$ curl -H "Content-Type: application/json" -X GET http://localhost:3000/
metadata

[
 {
 "address": "127.0.0.1",
 "rack": "rack1",
 "datacenter": "datacenter1"
 },
 {
 "address": "127.0.0.3",
 "rack": "rack1",
 "datacenter": "datacenter1"
 },
 {
 "address": "127.0.0.2",
 "rack": "rack1",
 "datacenter": "datacenter1"
 }
]

Code listing

The complete code listing illustrates:

• connecting to a cluster
• retrieving metadata and printing it out

var express = require('express');
var bodyParser = require('body-parser');
var cassandra = require('cassandra-driver');

var client = new cassandra.Client({ contactPoints : ['127.0.0.1'] });
client.connect(function(err, result) {
 console.log('Connected.');
});

var app = express();
app.use(bodyParser.json());
app.set('json spaces', 2);

app.get('/metadata', function(req, res) {
 res.send(client.hosts.slice(0).map(function (node) {
 return { address : node.address, rack : node.rack, datacenter :
 node.datacenter }
 }));
});

var server = app.listen(3000, function() {
 console.log('Listening on port %d', server.address().port);
});

Writing your first client

9

Executing CQL statements
Once you have connected to a Cassandra cluster using a Client object, you execute CQL statements to
read and write data.

Before you begin
This tutorial uses a CQL schema which is described in a post on the DataStax developer blog. Reading
that post, could help with some of the CQL concepts used here.

About this task

Getting metadata for the cluster is good, but you also want to be able to read and write data to the cluster.
The Node.js driver lets you execute CQL statements using a Client instance. You will add code to your
client for:

• creating a keyspace
• creating tables
• inserting data into those tables
• querying the tables
• printing the results

In this topic you will add the following functionality by mapping functions that execute CQL statements
using the driver Client object.

Table 1:

URL HTTP method Description

http://localhost:3000/keyspace POST Creates a keyspace, simplex,
on the cluster. (The example here
uses a three node cluster running
on localhost.)

http://localhost:3000/tables POST Creates two tables, songs and
playlists in the simplex
keyspace.

http://localhost:3000/song POST Insert data into the two tables.
(The example here will use text
files with JSON.)

http://localhost:3000/song/id GET Retrieve a song by id.

Procedure

1. Add code to your server.js file to create the simplex keyspace and the songs and playlists tables.

a) Register a POST URL with the app object to create the keyspace.

app.post('/keyspace', function(req, res) {
 client.execute("CREATE KEYSPACE IF NOT EXISTS simplex WITH
 replication " +
 "= {'class' : 'SimpleStrategy',
 'replication_factor' : 3};",
 afterExecution('Error: ', 'Keyspace created.', res));
});

http://www.datastax.com/dev/blog/cql3-for-cassandra-experts

Writing your first client

10

Note the afterExecution function being passed to the execute method. Because the driver
executes CQL statements asynchronously, you need to pass in a callback function.

b) Add the afterExecution function.

function afterExecution(errorMsessage, successMessage, res) {
 return function(err) {
 if (err) {
 return res.json(errorMessage);
 } else {
 res.json(successMessage);
 }
 }
}

c) Register a POST URL with the app object to create the two tables.

app.post('/tables', function(req, res) {
 async.parallel([
 function(next) {
 client.execute('CREATE TABLE IF NOT EXISTS simplex.songs ('
 +
 'id uuid PRIMARY KEY,' +
 'title text,' +
 'album text,' +
 'artist text,' +
 'tags set<text>,' +
 'data blob' +
 ');',
 next);
 },
 function(next) {
 client.execute('CREATE TABLE IF NOT EXISTS simplex.playlists
 (' +
 'id uuid,' +
 'title text,' +
 'album text,' +
 'artist text,' +
 'song_id uuid,' +
 'PRIMARY KEY (id, title, album, artist)' +
 ');',
 next);
 }
], afterExecution('Error: ', 'Tables created.' , res));
});

2. Add code to insert data into the simplex.songs table.

a) Add a global variable for the upsert statement with bind variables.

var upsertSong = 'INSERT INTO simplex.songs (id, title, album, artist,
 tags, data) '
 + 'VALUES(?, ?, ?, ?, ?, ?);';

b) Register a POST URL with the app object to insert data into the simplex.songs table.

app.post('/song', function(req, res) {
 var id = null;
 if (! req.body.hasOwnProperty('id')) {
 id = cassandra.types.uuid();

Writing your first client

11

 } else {
 id = req.body.id;
 }
 client.execute(upsertSong,
 [id, req.body.title, req.body.album, req.body.artist,
 req.body.tags, null],
 afterExecution('Error: ', 'Song ' + req.body.title + '
 upserted.', res));
});

The function tests to see whether a UUID is provided in the request body. If not it creates one.

3. Add code to get a song (specified by id) from the simplex.songs table.

a) Add a global variable for the SELECT statement with bind variables.

var getSongById = 'SELECT * FROM simplex.songs WHERE id = ?;';

b) Register a GET URL with the app object to select a song (specified by id) from the simplex.songs
table.

app.get('/song/:id', function(req, res) {
 client.execute(getSongById, [req.params.id], function(err, result)
 {
 if (err) {
 res.status(404).send({ msg : 'Song not found.' });
 } else {
 res.json(result); }
 });
});

4. Using a text editor, create two or more songs to insert with cURL.
Save the following object in a file, song001.json.

{
 "id" : "756716f7-2e54-4715-9f00-91dcbea6cf50",
 "title" : "La Petite Tonkinoise",
 "album" : "Bye Bye Blackbird",
 "artist" : "Joséphine Baker",
 "tags" : ["jazz", "2013"]
}

5. Run the server, insert some songs, and retrieve a song by id.

a) Save the server.js file.
b) Run the server.

$ node server.js

A single line is displayed.

Listening on port 3000
c) Insert some songs with cURL.

$ curl -H "Content-Type: application/json" -X POST --data @song001.json
 http://localhost:3000/song

d) Retrieve a song by id.

$ curl -H "Content-Type: application/json" -X GET http://localhost:3000/
song/756716f7-2e54-4715-9f00-91dcbea6cf50

Writing your first client

12

An excerpt of the JSON returned.

{
 "rows": [
 "id": "756716f7-2e54-4715-9f00-91dcbea6cf50",
 "album": "Bye Bye Blackbird",
 "artist": "Joséphine Baker",
 "data": null,
 "tags": [
 "2013",
 "jazz"
],
 "title": "La Petite Tonkinoise"
 }
}

Example

The complete code listing illustrates:

• creating a keypsace with two tables
• loading data into your new schema
• retrieving a row from one of the tables

var upsertSong = 'INSERT INTO simplex.songs (id, title, album, artist, tags,
 data) '
 + 'VALUES(?, ?, ?, ?, ?, ?);';
var getSongById = 'SELECT * FROM simplex.songs WHERE id = ?;';

var app = express();
app.use(bodyParser.json());

var client = new cassandra.Client({ contactPoints : ['127.0.0.1'] });
client.connect(function(err, result) {
 console.log('Connected.');
});

var app = express();
app.use(bodyParser.json());

app.get('/metadata', function(req, res) {
 res.send(client.hosts.slice(0).map(function (node) {
 return { address : node.address, rack : node.rack, datacenter :
 node.datacenter }
 }));
});

app.post('/keyspace', function(req, res) {
 client.execute("CREATE KEYSPACE IF NOT EXISTS simplex WITH replication "
 +
 "= {'class' : 'SimpleStrategy', 'replication_factor' :
 3};",
 afterExecution('Error: ', 'Keyspace created.', res));
});

app.post('/tables', function(req, res) {
 async.parallel([
 function(next) {
 client.execute('CREATE TABLE IF NOT EXISTS simplex.songs (' +
 'id uuid PRIMARY KEY,' +

Writing your first client

13

 'title text,' +
 'album text,' +
 'artist text,' +
 'tags set<text>,' +
 'data blob' +
 ');',
 next);
 },
 function(next) {
 client.execute('CREATE TABLE IF NOT EXISTS simplex.playlists ('
 +
 'id uuid,' +
 'title text,' +
 'album text,' +
 'artist text,' +
 'song_id uuid,' +
 'PRIMARY KEY (id, title, album, artist)' +
 ');',
 next);
 }
], afterExecution('Error: ', 'Tables created.' , res));
});

app.post('/song', function(req, res) {
 var id = null;
 if (! req.body.hasOwnProperty('id')) {
 id = cassandra.types.uuid();
 } else {
 id = req.body.id;
 }
 client.execute(upsertSong,
 [id, req.body.title, req.body.album, req.body.artist, req.body.tags,
 null],
 afterExecution('Error: ', 'Song ' + req.body.title + ' upserted.',
 res));
});

app.get('/song/:id', function(req, res) {
 client.execute(getSongById, [req.params.id], function(err, result) {
 if (err) {
 res.status(404).send({ msg : 'Song not found.' });
 } else {
 res.json(result); }
 });
});

function afterExecution(errorMsessage, successMessage) {
 return function(err, result) {
 if (err) {
 return console.log(errorMessage);
 } else {
 return console.log(successMessage);
 }
 }
}

var server = app.listen(3000, function() {
 console.log('Listening on port %d', server.address().port);
});

Reference

14

Reference

Reference for the Node.js driver.

Three simple rules for coding with the driver

When writing code that uses the driver, there are three simple rules that you should follow that make your
code efficient:

• Only use one Client instance per keyspace or use a single Client and explicitly specify the
keyspace in your queries and reuse it in across your modules in the application lifetime.

• If you execute a statement more than once, use a prepared statement.
• You can reduce the number of network roundtrips and also have atomic operations by using batches.

Client

The Client instance allows you to configure different important aspects of the way connections and
queries are handled. At this level, you can configure everything from contact points (address of the nodes
to be contacted initially before the driver performs node discovery), the request routing policy, retry and
reconnection policies, and so on. Generally such settings are set once at the application level.

var cassandra = require('cassandra-driver');
var DCAwareRoundRobinPolicy = cassandra.policies.DCAwareRoundRobinPolicy;
var client = new cassandra.Client({
 contactPoints: ['10.1.1.3', '10.1.1.4', '10.1.1.5'],
 policies: {
 loadBalancing: new DCAwareRoundRobinPolicy('US_EAST');
 }
});

A Client instance is a long-lived object, and it should not be used in a request-response, short-lived
fashion.

Your code should share the same client instance across your application.

Prepared statements

Using prepared statements provides multiple benefits. A prepared statement is parsed and prepared on the
Cassandra nodes and is ready for future execution. When binding parameters, only they (and the query
id) are sent over the wire. These performance gains add up when using the same queries (with different
parameters) repeatedly. Additionally, when preparing, the driver retrieves information about the parameter
types which allows an accurate mapping between a JavaScript type and a CQL type.

Preparing and executing statements in the driver does not require two chained asynchronous calls. You
can set the prepare flag in the query options and the driver handles the rest.

var query = 'SELECT id, name FROM users WHERE id = ?';
client.execute(query, [id], {prepare: true}, callback);

BATCH statements

The BATCH statement combines multiple data modification statements (INSERT, UPDATE, or DELETE)
into a single logical operation that is sent to the server in a single request. Batching together multiple

Reference

15

operations also ensures that they are executed in an atomic way, (that is, either all succeed or none). To
make the best use of BATCH, read about atomic batches in Cassandra 1.2 and static columns and batching
of conditional updates.

Starting with Cassandra 2.0, prepared statements can be used in batch operations.

var queries = [
 { query: 'UPDATE user_profiles SET email=? WHERE key=?',
 params: [emailAddress, 'hendrix']},
 { query: 'INSERT INTO user_track (key, text, date) VALUES (?, ?, ?)',
 params: ['hendrix', 'Changed email', new Date()]}
];
var queryOptions = { prepare: true, consistency:
 cassandra.types.consistencies.quorum };
client.batch(queries, queryOptions, function(err) {
 assert.ifError(err);
 console.log('Data updated on cluster');
});

For more information see this blog post on the four simple rules.

BATCH statements
Use BATCH statements to group together two or more CQL statements for execution.

It’s common for applications to require atomic batching of multiple INSERT, UPDATE, or DELETE
statements, even in different partitions or column families. Thanks to the Cassandra protocol changes
introduced in Cassandra 2.0, the driver allows you to execute multiple statements efficiently without the
need to concatenate multiple queries.

The method batch() accepts the queries as first parameter:

var query1 = 'UPDATE user_profiles SET email = ? WHERE key = ?';
var query2 = 'INSERT INTO user_track (key, text, date) VALUES (?, ?, ?)';
var queries = [
 { query: query1, params: [emailAddress, 'hendrix'] },
 { query: query2, params: ['hendrix', 'Changed email', new Date()] }
];
client.batch(queries, { prepare: true}, function (err) {
 // All queries have been executed successfully
 // Or none of the changes have been applied, check err
});

By preparing your queries, you will get the best performance and your JavaScript parameters correctly
mapped to Cassandra types. The driver will prepare each query once on each host and execute the batch
every time with the different parameters provided.

Client configuration
You can modify the tuning policies and connection options for a client as you build it.

The configuration of a client cannot be changed after it has been built. There are some miscellaneous
properties (such as whether metrics are enabled, contact points, and which authentication information
provider to use when connecting to a Cassandra cluster).

http://www.datastax.com/dev/blog/4-simple-rules-when-using-the-datastax-drivers-for-cassandra

Reference

16

Address resolution

The driver auto-detects new Cassandra nodes when they are added to the cluster by means of server-side
push notifications and checking the system tables.

For each node, the address the driver receives the address set as rpc_address in the node’s
cassandra.yaml file. In most cases, this is the correct value, however, sometimes the addresses
received in this manner are either not reachable directly by the driver or are not the preferred address to
use. A common such scenario is a multi-datacenter deployment with a client connecting using the private
IP address to the local datacenter (to reduce network costs) and the public IP address for the remote
datacenter nodes.

The AddressTranslator interface

The AddressTranslator interface allows you to deal with such cases, by transforming the address sent
by a Cassandra node to another address to be used by the driver for connection.

function MyAddressTranslator() {
}

util.inherits(MyAddressTranslator, AddressTranslator);
MyAddressTranslator.prototype.translate = function (address, port, callback)
 {
 // Your custom translation logic.
};

You then configure the driver to use your AddressTranslator implementation in the client options.

var client = new Client({
 contactPoints: ['1.2.3.4'],
 policies: {
 addressResolution: new MyAddressTranslator()
 }
});

Note: The contact points provided while creating the Client are not translated, only addresses
retrieved from or sent by Cassandra nodes are.

EC2 multi-region

The EC2MultiRegionTranslator class is provided out of the box. It helps optimize network costs when
your infrastructure (both Cassandra nodes and clients) is distributed across multiple Amazon EC2 regions:

• a client communicating with a Cassandra node in the same EC2 region should use the node’s private IP
address (which is less expensive)

• a client communicating with a node in a different region should use the public IP address

To use this implementation, provide an instance when initializing the Client object.

var cassandra = require('cassandra-driver');
var addressResolution = cassandra.policies.addressResolution;
var client = new Client({
 contactPoints: ['1.2.3.4'],
 policies: {
 addressResolution: new addressResolution.EC2MultiRegionTranslator()
 }
});

Reference

17

The Client class performs a reverse DNS lookup of the origin address to find the domain name of the
target instance. Then it performs a forward DNS lookup of the domain name; the EC2 DNS does the
private to public switch automatically based on location.

Client options
Client options are configured when instantiating a Client object.

Table 2: Client Options

Name Type Description

contactPoints Array Array of addresses or host names
of the nodes to add as contact
point.

policies Object Properties:

• loadBalancing: the
LoadBalancingPolicy
instance to be used to
determine the coordinator
per query. Default:
TokenAwarePolicy with
DCAwareRoundRobinPolicy
as it child.

• retry: the RetryPolicy
to be used. Default:
RetryPolicy.

• reconnection: the
ReconnectionPolicy
to be used. Default: new
reconnection.ExponentialReconnectionPolicy(1000,
10 * 60 * 1000, false)

queryOptions QueryOptions

pooling Object Properties:

• heartbeatInterval:
the amount of idle time
in milliseconds that has
to pass before the driver
issues a request on an active
connection to avoid idle time
disconnections;. Default:
30000

• coreConnectionsPerHost:
an associative array
containing amount of
connections per host distance.

protocolOptions Object Properties:

• port: the port Number to use
to connect to the Cassandra
host. Default: 9042.

• maxSchemaAgreementWaitSeconds:
the maximum time in seconds
to wait for schema agreement

Reference

18

Name Type Description

between nodes before
returning from a DDL query.
Default: 10.

socketOptions Object Properties:

• connectTimeout:
connection timeout in Number
of milliseconds. Default: 5000.

• keepAlive: whether to
enable TCP keepalive on the
socket. Default: true.

• keepAliveDelay:
TCP keepalive delay in
milliseconds. Default: 0.

authProvider AuthProvider Provider to be used to
authenticate to an auth-enabled
host. Default: null.

sslOptions Object Client-to-node ssl options: when
set the driver will use the secure
layer. You can specify cert, ca, ...
options named after the Node.js
tls.connect options.

encoding Object Properties:

• map: a map constructor to
use for Cassandra map types
encoding and decoding.
Default: Javascript Object with
map keys as property names.

• set: a set constructor to
use for Cassandra set types
encoding and decoding.
Default: Javascript Array.

The user can provide the options when creating a new instance of client:

var options = {
 policies: {
 loadBalancing: new cassandra.loadBalancing.DCAwareRoundRobinPolicy()
 },
 authProvider: new cassandra.auth.PlainTextAuthProvider('usr1',
 'p@ssword1')
}

var client = new Client(options);

Query options

Name Type Description

consistency Number Consistency level.

Reference

19

Name Type Description

fetchSize Number Amount of rows to retrieve per
page.

prepare Boolean Determines if the query must
be executed as a prepared
statement.

autoPage Boolean Determines if the driver must
retrieve the next pages.

routingKey Buffer or Array Partition key(s) to determine
which coordinator should be used
for the query.

routingIndexes Array Index of the parameters that
are part of the partition key to
determine the routing.

routingNames Array Array of the parameters names
that are part of the partition key to
determine the routing.

hints Array or Array<Array> Type hints for parameters given
in the query, ordered as for the
parameters. For batch queries, an
array of such arrays, ordered as
with the queries in the batch.

pageState Buffer or String Buffer or string token
representing the paging state.
Useful for manual paging, if
provided, the query will be
executed starting from a given
paging state.

retry RetryPolicy Retry policy for the query.
This property can be used
to specify a different retry
policy to the one specified in
theClientOptions.policies.

Native protocol

Examples

The native protocol defines the format of the binary messages exchanged between the driver and
Cassandra over TCP. As a driver user what you need to be aware of is that some Cassandra features
are only available with a specific protocol version, but if you are interested in the technical details you can
check the specification in the Cassandra codebase.

Compatibility matrix

Cassandra 1.2.x (DSE
3.2)

Cassandra 2.0.x (DSE
4.0 – 4.6)

Cassandra 2.1.x (DSE
4.7)

Driver 1.0.x Native protocol version 1 Native protocol version 1 Native protocol version 1

Driver 2.0.x Native protocol version 1 Native protocol version 2 Native protocol version 2

http://www.datastax.com/drivers/nodejs/2.0/module-policies_retry.html
http://www.datastax.com/drivers/nodejs/2.0/module-policies_retry.html
http://www.datastax.com/drivers/nodejs/2.0/global.html#ClientOptions
https://git-wip-us.apache.org/repos/asf?p=cassandra.git;a=tree;f=doc;hb=HEAD

Reference

20

Cassandra 1.2.x (DSE
3.2)

Cassandra 2.0.x (DSE
4.0 – 4.6)

Cassandra 2.1.x (DSE
4.7)

Driver 2.1.x Native protocol version 1 Native protocol version 2 Native protocol version 3

For example, if you use version 2.1.0 of the driver to connect to Cassandra 2.0.9, the maximum version
you can use (and the one you'll get by default) is native protocol version 2 (last line, middle column). If you
use the same version to connect to Cassandra 2.1.4, you can use native protocol version 3.

Controlling the protocol version

By default, the driver uses the highest protocol version supported by the driver and the Cassandra cluster.
If you want to limit the protocol version to use, you do so in the protocol options.

var client = new Client({
 contactPoints: ['1.2.3.4'],
 protocolOptions: { maxVersion: 2}
});

Mixed cluster versions and rolling upgrades

The protocol version used between the client and the Cassandra cluster is negotiated upon establishing
the first connection. For clusters with nodes running mixed versions of Cassandra and during rolling
upgrades this could represent an issue that could lead to limited availability.

To exemplify the above, consider a mixed cluster having nodes running either Cassandra 2.1 or 2.0.
Assuming the driver version is 2.1.0 or greater:

• The first contact point is a 2.1 host, so the driver negotiates native protocol version 3
• While connecting to the rest of the cluster, the driver contacts a 2.0 host using native protocol version 3,

which fails; an error is logged and this host will be permanently ignored

For these scenarios, mixed version clusters and rolling upgrades, it is strongly recommended to set the
maximum protocol version when initializing the client:

var client = new Client({
 contactPoints: ['1.2.3.4'],
 protocolOptions: { maxVersion: 2}
});

And switching it to the highest protocol version once the upgrade is completed, by leaving the maximum
protocol version unspecified:

var client = new Client({ contactPoints: ['1.2.3.4'] });

Pooling configuration

The driver maintains one or more connections opened to each Cassandra node selected by the load-
balancing policy. The amount of connections per host is defined in the pooling configuration.

Default pooling configuration

The default number of connections per host depends on which Cassandra version the driver connects to.

/en/drivers/nodejs/2.1/global.html#ClientOptions

Reference

21

Cassandra versions 1.2 and 2.0 allow the clients to send up to 128 requests without waiting for a response
per connection. Higher versions of Cassandra (that is 2.1 or greater) allow clients to send up to 32768
requests without waiting for a response.

By default, the driver maintains two open connections to each host in the local datacenter and one to each
host in a remote datacenter for Cassandra 1.2 or 2.0 and one connection to each host (local or remote) for
Cassandra 2.1 or greater.

Setting the number of connections per host

You set the number of connections per host in the pooling configuration:

var cassandra = require('cassandra-driver');
var distance = cassandra.types.distance;
var options = {
 contactPoints: ['1.2.3.4'],
 pooling: {
 coreConnectionsPerHost: {}
 }
};
options.pooling.coreConnectionsPerHost[distance.local] = 4;
options.pooling.coreConnectionsPerHost[distance.remote] = 1;
var client = new Client(options);

Tuning policies
Tuning policies determine load balancing, retrying queries, and reconnecting to a node.

Load balancing policy
The load balancing policy determines which node to execute a query on.

Description

The load balancing policy interface consists of three methods:

• #distance(Host host): determines the distance to the specified host. The values are
distance.ignored, distance.local, and distance.remote.

• #init(client, hosts, callback): initializes the policy. The driver calls this method only once
and before any other method calls are made.

• #newQueryPlan(keyspace, queryOptions, callback): executes a callback with the iterator of
hosts to use for a query. Each new query calls this method.

The policies are responsible for yielding a group of nodes in an specific order for the driver to use (if the
first node fails, it uses the next one). There are three load-balancing policies implemented in the driver:

• DCAwareRoundRobinPolicy: a datacenter-aware, round-robin, load-balancing policy. This policy
provides round-robin queries over the node of the local datacenter. It also includes in the query plans
returned a configurable number of hosts in the remote data centers, but those are always tried after the
local nodes.

• RoundRobinPolicy: a policy that yields nodes in a round-robin fashion.
• TokenAwarePolicy: a policy that yields replica nodes for a given partition key and keyspace. The

token-aware policy uses a child policy to retrieve the next nodes in case the replicas for a partition key
are not available.

Default load-balancing policy

The default load-balancing policy is the TokenAwarePolicy with DCAwareRoundRobinPolicy as a
child policy. It may seem complex but it actually isn’t: The policy yields local replicas for a given key and, if
not available, it yields nodes of the local datacenter in a round-robin manner.

Reference

22

Setting the load-balancing policy

To use a load-balancing policy, you pass it in as a clientOptions object to the Client constructor.

// You can specify the local dc relatively to the node.js app
var localDatacenter = 'us-east';
var loadBalancingPolicy = new
 cassandra.policies.loadBalancing.DCAwareRoundRobinPolicy(localDatacenter);
var clientOptions = {
 policies : {
 loadBalancing : loadBalancingPolicy
 }
};
var client = new cassandra.Client(clientOptions);

Implementing a custom load-balancing policy

The built-in policies in the Node.js driver cover most common use cases. In the rare case that you need
to implement you own policy you can do it by inheriting from one of the existent policies or the abstract
LoadBalancingPolicy class.

You have to take into account that the same policy is used for all queries in order to yield the hosts in
correct order.

The load-balancing policies are implemented using the Iterator Protocol, a convention for lazy iteration
allowing to produce only the next value in the series without producing a full Array of values. Under
ECMAScript 6 (Harmony), it enables you to use the new generators.

Example: A policy that selects every node except an specific one. Note that this policy is a sample and it is
not intended for production use. Use multiple datacenter Cassandra clusters instead.

function BlackListPolicy(blackListedHost, childPolicy) {
 this.blackListedHost = blackListedHost;
 this.childPolicy = childPolicy;
}

util.inherits(BlackListPolicy, LoadBalancingPolicy);

BlackListPolicy.prototype.init = function (client, hosts, callback) {
 this.client = client;
 this.hosts = hosts;
 //initialize the child policy
 this.childPolicy.init(client, hosts, callback);
};

BlackListPolicy.prototype.getDistance = function (host) {
 return this.childPolicy.getDistance(host);
};

BlackListPolicy.prototype.newQueryPlan = function (keyspace, queryOptions,
 callback) {
 var self = this;
 this.childPolicy.newQueryPlan(keyspace, queryOptions, function (iterator)
 {
 callback(self.filter(iterator));
 });
}

BlackListPolicy.prototype.filter = function (childIterator) {
 var self = this;
 return {

Reference

23

 next: {
 var item = childIterator.next();
 if (item.address === self.blackListedHost) {
 //use the next one
 return this.next();
 }
 return item;
 }
 }
}

Reconnection policy
The reconnection policy determines how often a reconnection to a dead node is attempted.

Description

The reconnection policy consists of one method:

• #newSchedule(): creates a new schedule to use in reconnection attempts.

By default, the driver uses an exponential reconnection policy. The driver includes these two policy
classes:

• ConstantReconnectionPolicy

• ExponentialReconnectionPolicy

Retry policy
The retry policy determines a default behavior to adopt when a request either times out or if a node is
unavailable.

Description

A client may send requests to any node in a cluster whether or not it is a replica of the data being
queried. This node is placed into the coordinator role temporarily. Which node is the coordinator is
determined by the load balancing policy for the cluster. The coordinator is responsible for routing the
request to the appropriate replicas. If a coordinator fails during a request, the driver connects to a
different node and retries the request. If the coordinator knows before a request that a replica is down,
it can throw an UnavailableException, but if the replica fails after the request is made, it throws
a TimeoutException. Of course, this all depends on the consistency level set for the query before
executing it.

A retry policy centralizes the handling of query retries, minimizing the need for catching and handling of
exceptions in your business code.

The retry policy interface consists of three methods:

• #onReadTimeout(requestInfo, consistency, received, blockFor, isDataPresent)

• #onUnavailable(requestInfo, consistency, required, alive)

• #onWriteTimeout(requestInfo, consistency, received, blockFor, writeType)

In version 1 of the driver, a default and base retry policy is included.

Cluster and schema metadata
Retrieving cluster topology and schema metadata from the driver.

You can retrieve the cluster topology and the schema metadata information. from the driver

After establishing the first connection, the driver retrieves the cluster topology details and exposes
these through properties of the client object. This information is kept up to date using Cassandra event
notifications.

Reference

24

The following example outputs hosts information about your cluster:

client.hosts.forEach(function (host) {
 console.log(host.address, host.datacenter, host.rack);
});

Additionally, the keyspaces information is already loaded into the Metadata object:

client.hosts.forEach(function (host) {
 console.log(host.address, host.datacenter, host.rack);
});

To retrieve the definition of a table, use the Metadata#getTable() method:

client.metadata.getTable('ks1', 'table1', function (err, tableInfo) {
 if (!err) {
 console.log('Table %s', table.name);
 table.columns.forEach(function (column) {
 console.log('Column %s with type %j', column.name, column.type);
 });
 }
});

When retrieving the same table definition concurrently, the driver queries once and invokes all callbacks
with the retrieved information.

CQL data types to JavaScript types
A summary of the mapping between CQL data types and JavaScript data types is provided.

Description

When retrieving the value of a column from a Row object, the value is typed according to the following
table.

Table 3: JavaScript types to CQL data types

CQL data type JavaScript type

ascii String

bigint Long

blob Buffer

boolean Boolean

counter Long

decimal BigDecimal

double Number

float Number

inet InetAddress

int Number

/en/drivers/nodejs/2.1/Metadata.html
/en/drivers/nodejs/2.1/Metadata.html#getTable
http://www.datastax.com/drivers/nodejs/2.0/module-types-BigDecimal.html
http://www.datastax.com/drivers/nodejs/2.0/module-types-InetAddress.html

Reference

25

CQL data type JavaScript type

list Array

map Object / ECMAScript 6 Map

set Array / ECMAScript 6 Set

text String

timestamp Date

timeuuid String

uuid String

varchar String

varint Integer

Note: There are few data types defined in the ECMAScript standard for JavaScript. This usually
represents a problem when you are trying to deal with data types that come from other systems.

Encoding data

When encoding data, on a normal execute with parameters, the driver tries to guess the target type based
on the input type. Values of type Number will be encoded as double (because Number is double or IEEE
754 value).

Consider the following example:

var key = 1000;
client.execute('SELECT * FROM table1 where key = ?', [key], callback);

If the key column is of type int, the execution fails. There are two possible ways to avoid this type of
problem:

Prepare the data (recommended)

Using prepared statements provides multiple benefits. Prepared statements are parsed and prepared on
the Cassandra nodes and are ready for future execution. Also, the driver retrieves information about the
parameter types which allows an accurate mapping between a JavaScript type and a Cassandra type.

Using the previous example, setting the prepare flag in the queryOptions will fix it:

// prepare the query before execution
client.execute('SELECT * FROM table1 where key = ?', [key], { prepare : true },
 callback);

When using prepared statements, the driver prepares the statement once on each host to execute multiple
times.

Hinting the target types

Providing hints in the query options is another way around it.

// Hint: the first parameter is an integer
client.execute('SELECT * FROM table1 where key = ?', [key], { hints : ['int'] },
 callback);

Collections

http://www.datastax.com/drivers/nodejs/2.0/module-types-Integer.html

Reference

26

List and Set

When reading columns with CQL list or set data types, the driver exposes them as native Arrays.
When writing values to a list or set column, you can pass in a Array.

client.execute('SELECT list_val, set_val, double_val FROM tbl', function
 (err, result) {
 assert.ifError(err);
 console.log(Array.isArray(result.rows[0]['list_val'])); // true
 console.log(Array.isArray(result.rows[0]['set_val'])); // true
});

Map

JavaScript objects are used to represent the CQL map data type in the driver, because JavaScript objects
are associative arrays.

client.execute('SELECT map_val FROM tbl', function (err, result) {
 assert.ifError(err);
 console.log(JSON.stringify(result.rows[0]['map_val'])); //
{"key1":1,"key2":2}
});

When using CQL maps, the driver needs a way to determine that the object instance passed as a
parameter must be encoded as a map. Inserting a map as an object will fail:

var query = 'INSERT INTO tbl (id, map_val) VALUES (?, ?)';
var params = [id, {key1: 1, key2: 2}];
client.execute(query, params, function (err) {
 console.log(err) // TypeError: The target data type could not be guessed
});

To overcome this limitation, you should prepare your queries. Preparing and executing statements in the
driver does not require chaining two asynchronous calls, you can set the prepare flag in the query options
and the driver will handle the rest. The previous query, using the prepare flag, will succeed:

client.execute(query, params, { prepare: true}, callback);

ECMAScript Map and Set support

The new built-in types in ECMAScript 6, Map and Set, can be used to represent CQL map and set values.
To enable this option, you should specify the constructors in the client options.

var options = {
 contactPoints: contactPoints,
 encoding: {
 map: Map,
 set: Set
 }
};
var client = new cassandra.Client(options);

This way, when encoding or decoding map or set values, the driver uses those constructors:

client.execute('SELECT map_val FROM tbl', function (err, result) {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

Reference

27

 assert.ifError(err);
 console.log(result.rows[0]['map_val'] instanceof Map); // true
});

Numerical values

The driver provides support for all the CQL numerical data types, such as int, float, double, bigint,
varint, and decimal. There is only one numerical data type in ECMAScript standard, Number, which is
a type representing a double-precision 64-bit value. It is used by the driver to handle double, float, and
int values.

int, float, and double data types

JavaScript provides methods to operate with Numbers (that is, IEEE 754 double-precision floats) and built-
in operators (sum, subtraction, division, bitwise, etc), making it a good fit for CQL data types int, float.
and double.

When decoding any of these data type values, it is returned as a Number.

client.execute('SELECT int_val, float_val, double_val FROM tbl', function
 (err, result) {
 assert.ifError(err);
 console.log(typeof result.rows[0]['int_val']); // Number
 console.log(typeof result.rows[0]['float_val']); // Number
 console.log(typeof result.rows[0]['double_val']); // Number
});

When encoding the data, the driver tries to encode a Number as double because it can not automatically
determine if is dealing with an int, a float, or a double.

Inserting a Number value as a double succeeds:

var query = 'INSERT INTO tbl (id, double_val) VALUES (?, ?)';
client.execute(query, [id, 1.2], callback);

But doing the same with a float fails:

var query = 'INSERT INTO tbl (id, float_val) VALUES (?, ?)';
client.execute(query, [id, 1.2], function (err) {
 console.log(err) // ResponseError: Expected 4 or 0 byte value for a
 float (8)
});

Trying to do the same with an int, also fails because Cassandra expects a float or an int, and the
driver sent a 64-bit double.

var query = 'INSERT INTO tbl (id, int_val) VALUES (?, ?)';
client.execute(query, [id, 1], function (err) {
 console.log(err) // ResponseError: Expected 4 or 0 byte int (8)
});

To overcome this limitation, you should prepare your queries. Because preparing and executing
statements in the driver does not require chaining two asynchronous calls, you can set the prepare flag in
the query options and the driver handles the rest.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Reference

28

The previous query, using the prepare flag, succeeds no matter if it is an int, float, or double:

var query = 'INSERT INTO tbl (id, int_val) VALUES (?, ?)';
client.execute(query, [id, 1], { prepare: true }, callback);

decimal data type

The BigDecimal class provides support for representing the CQL decimal data type, because
JavaScript has no built-in arbitrary precision decimal representation.

var BigDecimal = require('cassandra-driver').types.BigDecimal;
var value1 = new BigDecimal(153, 2);
var value2 = BigDecimal.fromString('1.53');
console.log(value1.toString()); // 1.53
console.log(value2.toString()); // 1.53
console.log(value1.equals(value2)); // true

The driver decodes CQL decimal data type values as instances of BigDecimal.

client.execute('SELECT decimal_val FROM users', function (err, result) {
 assert.ifError(err);
 console.log(result.rows[0]['decimal_val'] instanceof BigDecimal); //
 true
});

bigint data type

The Long class provides support for representing the CQL bigint data type, because JavaScript has no
built-in 64-bit integer representation.

var Long = require('cassandra-driver').types.Long;
var value1 = Long.fromNumber(101);
var value2 = Long.fromString('101');
console.log(value1.toString()); // 101
console.log(value2.toString()); // 101
console.log(value1.equals(value2)); // true
console.log(value1.add(value2).toString()); // 202

The driver decodes CQL bigint data type values as instances of Long.

client.execute('SELECT bigint_val FROM users', function (err, result) {
 assert.ifError(err);
 console.log(result.rows[0]['bigint_val'] instanceof Long); // true
});

varint data type

The Integer class, originally part of the Google Closure math library, provides support for representing
CQ: varint data type values, because JavaScript has no arbitrarily large signed integer representation.

var Integer = require('cassandra-driver').types.Integer;
var value1 = Integer.fromNumber(404);
var value2 = Integer.fromString(404);

http://www.datastax.com/drivers/nodejs/2.0/module-types-BigDecimal.html
http://www.datastax.com/drivers/nodejs/2.0/module-types-Long.html
http://www.datastax.com/drivers/nodejs/2.0/module-types-Integer.html

Reference

29

console.log(value1.toString()); // 404
console.log(value2.toString()); // 404
console.log(value1.equals(value2)); // true
console.log(value1.add(value2).toString()); // 808

The driver decodes CQL varint data type values as instances of Integer.

client.execute('SELECT varint_val FROM users', function (err, result) {
 assert.ifError(err);
 console.log(result.rows[0]['varint_val'] instanceof Integer); // true
});

User-defined types

Cassandra 2.1 introduces support for user-defined types (UDT). A UDT simplifies handling a group of
related properties.

An example is a user account table that contains address details described through a set of columns:
street, city, zip code. With the addition of UDTs, you can define this group of properties as a type and
access them as a single entity or separately.

User-defined types are declared at the keyspace level.

With the Node.js driver, you can retrieve and store UDTs using JavaScript objects.

For example, given the following UDT and table:

CREATE TYPE address (
 street text,
 city text,
 state text,
 zip int,
 phones set<text>
);

CREATE TABLE users (
 name text PRIMARY KEY,
 email text,
 address frozen<address>
);

You retrieve the user address details as a regular JavaScript object.

var query = 'SELECT name, email, address FROM users WHERE id = ?';
client.execute(query, [name], { prepare: true }, function (err, result) {
 var row = result.first();
 var address = row.address;
 console.log('User lives in %s - %s', address.city, address.state);
});

You modify the address using JavaScript objects as well:

var address = {
 city: 'Santa Clara',
 state: 'CA',
 street: '3975 Freedom Circle',
 zip: 95054,
 phones: ['650-389-6000']

/en/cql/3.1/cql/cql_reference/cqlRefUDType.html

Reference

30

};
var query = 'UPDATE users SET address = ? WHERE id = ?';
client.execute(query, [address, name], { prepare: true}, callback);

Setting the prepare flag is recommended because it helps the driver to accurately map the UDT fields
from and to object properties.

You can provide JavaScript objects as parameters without setting the prepare flag, but you must provide
the parameter hint (udt<address>) and initially the driver makes an extra roundtrip to the cluster to
retrieve the UDT metadata.

Nesting user-defined types in CQL

User defined types can nested arbitrarily. Here is an example based on the schema used in the previous
example, but with the phones column changed from set<text> to a set<frozen<phone>>. The phone
UDT contains an alias, a phone_number and a country_code.

CREATE TYPE phone (
 alias text,
 phone_number text,
 country_code int
);

CREATE TYPE address (
 street text,
 city text,
 state text,
 zip int,
 phones set<frozen<phone>>
);

CREATE TABLE users (
 name text PRIMARY KEY,
 email text,
 address frozen<address>
);

You access the UDT fields in the same way, but as nested JavaScript objects.

var query = 'SELECT name, email, address FROM users WHERE id = ?';
client.execute(query, [name], { prepare: true }, function (err, result) {
 var row = result.first();
 var address = row.address;
 // phones is an Array of Objects
 address.phones.forEach(function (phone) {
 console.log(Phone %s: %s', phone.alias, phone.phone_number);
 });
});

UUID and time-based UUID data types

The driver provides ways to generate and decode UUIDs and time-based UUID.

Uuid

The Uuid class provides support for representing Cassandra uuid data type. To generate a version 4
unique identifier, use the Uuid static method random():

http://www.datastax.com/drivers/nodejs/2.0/module-types-Uuid.html

Reference

31

var Uuid = require('cassandra-driver').types.Uuid;
var id = Uuid.random();

The driver decodes Cassandra uuid data type values as an instances of Uuid.

client.execute('SELECT id FROM users', function (err, result) {
 assert.ifError(err);
 console.log(result.rows[0].id instanceof Uuid); // true
 console.log(result.rows[0].id.toString()); // xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx
});

You can also parse a string representation of a uuid into a Uuid instance:

var id = Uuid.fromString(stringValue);
console.log(id instanceof Uuid); // true
console.log(id.toString() === stringValue); // true

TimeUuid

The TimeUuid class provides support for representing Cassandra timeuuid data type. To generate a time-
based identifier, you can use the now() and fromDate() static methods:

var TimeUuid = require('cassandra-driver').types.TimeUuid;
var id1 = TimeUuid.now();
var id2 = TimeUuid.fromDate(new Date());

The driver decodes CQL timeuuid data type values as instances of TimeUuid.

client.execute('SELECT id, timeid FROM sensor', function (err, result) {
 assert.ifError(err);
 console.log(result.rows[0].timeid instanceof TimeUuid); // true
 console.log(result.rows[0].timeid instanceof Uuid); // true, it inherits
 from Uuid
 console.log(result.rows[0].timeid.toString()); // <- xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx
 console.log(result.rows[0].timeid.getDate()); // <- Date stored in
 the identifier
});

You can specify the other parts of the identifier, such as the node and the clock sequence, or the 100-
nanosecond precision value of the date using the optional parameters in fromDate() method.

var ticks = 9123; // A number from 0 to 9999
var id = TimeUuid.fromDate(new Date(), ticks, node, clock);

Tuples

Cassandra 2.1 introduced a tuple type for CQL.

A tuple is a fixed-length set of typed positional fields. With the driver, you retrieve and store tuples using
the Tuple class. For example, given the following table to represent the value of the exchange between two
currencies.

http://www.datastax.com/drivers/nodejs/2.0/module-types-TimeUuid.html
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/tupleType.html
/en/drivers/nodejs/2.1/module-types-Tuple.html

Reference

32

CREATE TABLE forex (
 name text,
 time timeuuid,
 currencies frozen<tuple<text, text>>,
 value decimal,
 PRIMARY KEY (name, time)
);

You retrieve the Tuple value.

var query = 'SELECT name, time, currencies, value FROM forex where name
 = ?';
client.execute(query, [name], { prepare: true }, function (err, result) {
 result.rows.forEach(function (row) {
 console.log('%s to %s: %s', row.currencies.get(0),
 row.currencies.get(1), row.value);
 });
});

You use the get(index) method to obtain the value at any position or the values() method to obtain
an Array representation of the Tuple.

To create a new Tuple, you use the constructor providing the values as parameters.

var Tuple = require('cassandra-driver').types.Tuple;
// Create a new instance of a Tuple.
var currencies = new types.Tuple('USD', 'EUR');
var query = 'INSERT INTO forex (name, time, currencies, value) VALUES
 (?, ?, ?, ?)';
var params = ['market1', TimeUuid.now(), currencies, new BigDecimal(1, 0)];
client.execute(query, params, { prepare: true }, callback);

Fetching large result sets
The single-threaded nature of Node.js should be taken into consideration when dealing with retrieving large
amount of rows. If an asynchronous method uses large buffers, it could cause large memory consumption
and a poor response time.

Because of this, the driver exposes the #eachRow() and #stream() methods. When using these
methods, the driver will parse the rows and yield them to the user as they come through the network. All
methods use a default fetchSize of 5000 rows, retrieving only the first page of results up to a maximum
of 5000 rows.

Automatic paging

If you want to retrieve the next pages, you can do it by setting autoPage: true in the queryOptions to
automatically request the next page, once it finished parsing the previous page.

// Imagine a column family with millions of rows.
var query = 'SELECT * FROM largetable';
client.eachRow(query, [], { autoPage : true }, function(n, row) {
 // This function will be called per each of the rows in all the table.
 }, callback);

Reference

33

Manual paging

If you want to retrieve the next page of results only when you ask for it (that is, a web pager), you use the
pageState made available by the end callback in #eachRow(). A non-null pageState value means that
there are additional result pages.

client.eachRow(query, [], { prepare : 1 , fetchSize : 1000 }, function (n,
 row) {
 // Row callback.
 }, function (err, result) {
 // End callback.
 // Store the paging state.
 pageState = result.pageState;
 }
);

In the following kinds of requests, use the page state.

// Use the pageState in the queryOptions to continue where you left it.
client.eachRow(query, [], { pageState : pageState, prepare : 1 ,
 fetchSize : 1000 }, function (n, row) {
 // Row callback.
 }, function (err, result) {
 // End callback.
 // Store the next paging state.
 pageState = result.pageState;
 }
);

Parameterized queries
Bind values to parameters either by position or by named markers.

You can bind the values of parameters in a prepared statement either by position or by using named
markers.

Positional parameterized query

When using positional parameters, the query parameters must be provided as an Array.

var query = 'INSERT INTO artists (id, name) VALUES (?, ?)';
// Parameters by marker position
var params = ['krichards', 'Keith Richards'];
client.execute(query, params, { prepare: true }, callback);

Named parameterized query

You declare the named markers in your queries and use a JavaScript object properties to define the
parameters, with the Object property names matching the parameters names.

var query = 'INSERT INTO artists (id, name) VALUES (:id, :name)';
// Parameters by marker name
var params = { id: 'krichards', name: 'Keith Richards' };
client.execute(query, params, { prepare: true }, callback);

Reference

34

Defining named markers in your queries is supported in Cassandra 2.0 or greater for prepared statements
and only Cassandra 2.1 or greater for non-prepared statements.

Routing queries
Specify the parameter values that compose the partition key of the nodes to be used as coordinators for
the query.

When using the TokenAwarePolicy, you can specify the parameter values that compose the partition
key to tell the driver which nodes should be used as coordinators for the query.

Examples

Consider a table users that has a single partition key, id. You can indicate the position of the parameter
that forms the partition key.

var query = 'INSERT INTO users (id, name) VALUES (?, ?)';
var params = [Uuid.random(), 'Paul'];
// The parameter at index 0 is the partition key
client.execute(query, params, { routingIndexes: [0] }, callback);

In the same way, for a table that has multiple partition keys:

var query = 'INSERT INTO temperature (name, slot, value, date) VALUES
 (?, ?, ?, ?)';
var params = ['Sensor 01', '201501', temperatureValue, new Date()];
// The parameters at index 0 and 1 form the partition key
client.execute(query, params, { routingIndexes: [0, 1] }, callback);

When using named parameters, you can also specify the routing parameters by name.

var query = 'INSERT INTO temperature (value, name, slot, date) VALUES
 (:value, :name, :slot, :date)';
var params = {value: temperatureValue, name: 'Sensor 01', slot: '201501',
 date: new Date()};
// The parameters 'name' and 'slot' form the partition key
client.execute(query, params, { routingNames: ['name', 'slot'] }, callback);

http://www.datastax.com/drivers/nodejs/2.0/module-policies_loadBalancing-TokenAwarePolicy.html

FAQ

35

FAQ

Which versions of Cassandra does the driver support?

Version 2.1 of the driver supports any Cassandra version greater than 1.2 and above.

Which versions of CQL does the driver support?

It supports CQL version 3.

How do I generate a uuid or a timebased uuid?

Use the Uuid and TimeUuid classes inside the types module. For example:

var id = cassandra.types.Uuid.random();

Should I create one client instance per module in my application?

Normally you should use one client instance per application. You should share that instance between
modules within your application.

Should I shut down the pool after executing a query?

No, only call client.shutdown() once in your application's lifetime.

http://cassandra.apache.org/doc/cql3/CQL.html
/en/drivers/nodejs/2.1/module-types-Uuid.html
/en/drivers/nodejs/2.1/module-types-TimeUuid.html

API reference

36

API reference

DataStax Node.js Driver for Apache Cassandra.

http://docs.datastax.com/en/drivers/nodejs/2.1/Client.html

Tips for using DataStax documentation

37

Tips for using DataStax documentation

Navigating the documents

To navigate, use the table of contents or search in the left navigation bar. Additional controls are:

Hide or display the left navigation.

Go back or forward through the topics as listed in
the table of contents.

Toggle highlighting of search terms.

Print page.

See doc tweets and provide feedback.

\ Grab to adjust the size of the navigation pane.

Appears on headings for bookmarking. Right-click
the ¶ to get the link.

Toggles the legend for CQL statements and
nodetool options.

Other resources

You can find more information and help at:

• Documentation home page
• Datasheets
• Webinars
• Whitepapers
• Developer blogs
• Support

http://docs.datastax.com/en/index.html
http://www.datastax.com/resources/datasheets
http://www.datastax.com/resources/webinars
http://www.datastax.com/resources/whitepapers
http://www.datastax.com/dev/blog
http://www.datastax.com/what-we-offer/products-services/support

	Contents
	What's new?
	About the Node.js driver
	The driver and its dependencies

	Writing your first client
	Setting up the project
	Connecting to a Cassandra cluster
	Executing CQL statements

	Reference
	Three simple rules for coding with the driver
	BATCH statements
	Client configuration
	Address resolution
	Client options
	Native protocol
	Pooling configuration
	Tuning policies
	Load balancing policy
	Reconnection policy
	Retry policy

	Cluster and schema metadata
	CQL data types to JavaScript types
	Collections
	Numerical values
	User-defined types
	UUID and time-based UUID data types
	Tuples

	Fetching large result sets
	Parameterized queries
	Routing queries

	FAQ
	Which versions of Cassandra does the driver support?
	Which versions of CQL does the driver support?
	How do I generate a uuid or a timebased uuid?
	Should I create one client instance per module in my application?
	Should I shut down the pool after executing a query?

	API reference
	Using the docs

