
Python Driver 2.5 for Apache Cassandra
Documentation

${ds.localized.time}

© 2015 DataStax. All rights reserved.

Contents

2

Contents

About the Python driver... 3

Architectural overview...4
The driver and its dependencies.. 4
Optional non-Python dependencies.. 5

Installation.. 7

Writing your first client... 9
Connecting to a Cassandra cluster...9
Using a session to execute CQL statements... 11
Using prepared statements... 15

Python driver reference.. 18
Asynchronous I/O.. 18
Automatic failover.. 19
CQL data types to Python types...20
Debugging..22

Enabling debug-level logging... 22
Mapping user-defined types..23
Metadata refresh controls..25
Named parameters..25
Object-mapping package...26
Passing parameters to CQL queries...26
Tuple types.. 28

FAQ..29
Is there a distinction between different hosts?... 29
Are there plans to allow for a retry policy option for the execute() or execute_async() methods?.... 29

API reference..30

Using the docs...31

About the Python driver

3

About the Python driver

Use this driver in production applications to pass CQL statements from the client to a cluster and retrieve,
manipulate, or remove data.

The Python driver is a modern, feature-rich and highly tunable Java client library for Apache Cassandra
(1.2+) and DataStax Enterprise (3.1+) using exclusively Cassandra's binary protocol and Cassandra Query
Language v3.

Use this driver in production applications to pass CQL statements from the client to a cluster and
retrieve, manipulate, or remove data. Cassandra Query Language (CQL) is the primary language for
communicating with the Cassandra database. Documentation for CQL is available in CQL for Cassandra
2.x. DataStax also provides DataStax DevCenter, which is a free graphical tool for creating and running
CQL statements against Apache Cassandra and DataStax Enterprise. Other administrative tasks can be
accomplished using OpsCenter.

Here are the new and noteworthy features of the Python driver.

What's new in 2.5

• Integrated cqlengine object-mapping package
• Support new date and time data types
• Utility functions for converting CQL timeuuid data type to datetime type
• Randomized metadata fetch windows with configuration

What's new in 2.1

• Cassandra 2.1 support

• User-defined types (UDT)
• When using the version 3 protocol, only one connection is opened per-host, and throughput is

improved due to reduced pooling overhead and lock contention.
• Tuple type (limited usage Cassandra 2.0.9, full usage in Cassandra 2.1)
• Protocol-level client-side timestamps (see Session.use_client_timestamp)

• New features

• Overridable type encoding for non-prepared statements (see Session.encoder)
• Configurable serial consistency levels for batch statements
• Use io.BytesIO for reduced CPU consumption
• Support Twisted as a reactor. Note that a Twisted-compatible API is not exposed (so no Deferreds),

this is just a reactor implementation.

What's new in 2.0

• Support v2 of Cassandra's native protocol, which includes the following new features: automatic query
paging support, protocol-level batch statements, and lightweight transactions

• Support for Python 3.3 and 3.4
• Allow a default query timeout to be set per-Session
• Support v2 protocol authentication

/en/cql/3.1/cql/cql_intro_c.html
/en/cql/3.1/cql/cql_intro_c.html
/en/developer/devcenter/doc/devcenter/features.html
/en/latest-opsc
http://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Session.use_client_timestamp
http://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Session.encoder
https://docs.python.org/2/library/io.html#io.BytesIO

Architectural overview

4

Architectural overview

Information about the driver's architecture.

The Python Driver 2.5 for Apache Cassandra works exclusively with the Cassandra Query Language
version 3 (CQL3) and Cassandra's binary protocol.

The driver architecture is a layered one. At the bottom lies the driver core. This core handles everything
related to the connections to a Cassandra cluster (for example, connection pool, discovering new nodes,
etc.) and exposes a simple, relatively low-level API on top of which a higher level layer can be built.

The driver has the following features:

• Asynchronous: the driver uses the new CQL binary protocol asynchronous capabilities. Only a relatively
low number of connections per nodes needs to be maintained open to achieve good performance.

• Nodes discovery: the driver automatically discovers and uses all nodes of the Cassandra cluster,
including newly bootstrapped ones.

• Configurable load balancing: the driver allows for custom routing and load balancing of queries to
Cassandra nodes. Out of the box, round robin is provided with optional data-center awareness (only
nodes from the local data-center are queried (and have connections maintained to)) and optional token
awareness (that is, the ability to prefer a replica for the query as coordinator).

• Transparent failover: if Cassandra nodes fail or become unreachable, the driver automatically and
transparently tries other nodes and schedules reconnection to the dead nodes in the background.

• Cassandra trace handling: tracing can be set on a per-query basis and the driver provides a convenient
API to retrieve the trace.

• Convenient schema access: the driver exposes a Cassandra schema in a usable way.
• Configurable retry policy: a retry policy can be set to define a precise behavior to adopt on query

execution exceptions (for example, timeouts, unavailability). This avoids polluting client code with retry-
related code.

• Tunability: the default behavior of the driver can be changed or fine tuned by using tuning policies and
connection options.

Queries can be executed synchronously or asynchronously and prepared statements are supported.

The driver and its dependencies
The Python driver only supports the Cassandra Binary Protocol and CQL3

Cassandra binary protocol

The driver uses the binary protocol that was introduced in Cassandra 1.2. It only works with a version of
Cassandra greater than or equal to 1.2. Furthermore, the binary protocol server is not started with the
default configuration file in Cassandra 1.2. You must edit the cassandra.yaml file for each node:

start_native_transport: true

Then restart the node.

Cassandra compatibility

The 2.0 version of the driver handles a single version of the Cassandra native protocol for the sake of
simplicity. Cassandra does the multiple version handling. This makes it possible to do a rolling upgrade of
a Cassandra cluster from 1.2 to 2.0 and then to upgrade the drivers in the application layer from 1.0 to 2.0.
Because the application code needs to be changed anyway to leverage the new features of Cassandra
2.0, this small constraint appear to be fair.

Architectural overview

5

Python# driver 1.0.x Python driver 2.0.x

Cassandra 1.2.x Compatible Compatible

Cassandra 2.0.x Compatible for Cassandra 1.0
API and commands

Compatible

Optional non-Python dependencies
The driver has several optional features that have non-Python dependencies.

C extensions

By default, two C extensions are compiled: one that adds support for token-aware routing with the
Murmur3Partitioner, and one that allows you to use libev for the event loop, which improves performance.

When installing manually through setup.py, you can disable both with the --no-extensions option, or
selectively disable one or the other with --no-murmur3 and --no-libev.

To compile the extenions, ensure that GCC and the Python headers are available.

On Ubuntu and Debian, this can be accomplished by running:

$ sudo apt-get install gcc python-dev

On RedHat and RedHat-based systems like CentOS and Fedora:

$ sudo yum install gcc python-devel

On Mac OS X, homebrew installations of Python should provide the necessary headers.

libev support

The driver currently uses Python’s asyncore module for its default event loop. For better performance, libev
is also supported through a C extension.

If you’re on Linux, you should be able to install libev through a package manager. For example, on Debian/
Ubuntu:

$ sudo apt-get install libev4 libev-dev

On On RedHat and RedHat-based systems like CentOS and Fedora:

$ sudo yum install libev libev-devel

If you’re on Mac OS X, you should be able to install libev through Homebrew. For example, on Mac OS X:

$ brew install libev

If successful, you should be able to build and install the extension (just using setup.py build or
setup.py install) and then use the libev event loop by doing the following:

>>> from cassandra.io.libevreactor import LibevConnection
>>> from cassandra.cluster import Cluster
>>> cluster = Cluster()
>>> cluster.connection_class = LibevConnection
>>> session = cluster.connect()

Compression support

Compression can optionally be used for communication between the driver and Cassandra. There are
currently two supported compression algorithms: Snappy (in Cassandra 1.2+) and LZ4 (only in Cassandra
2.0+). If either is available for the driver and Cassandra also supports it, it will be used automatically.

For LZ4 support:

http://brew.sh/

Architectural overview

6

$ pip install lz4

For Snappy support:

$ pip install python-snappy

If using a Debian Linux derivative such as Ubuntu, it may be easier to just run

$ apt-get install python-snappy

.

Installation

7

Installation

Different ways to install the Python driver.

Supported platforms

Python 2.6, 2.7, 3.3, and 3.4 are supported. Both CPython (the standard Python implementation) and PyPy
are supported and tested against.

Linux, Mac OS X, and Windows are supported.

Installation with pip

pip is the suggested tool for installing packages. It handles installing all Python dependencies for the driver
at the same time as the driver itself. To install the driver:

$ pip install cassandra-driver

You can use pip install --pre cassandra-driver if you need to install a beta version.

Manual installation

When installing manually, ensure that the dependencies listed in the requirements.txt file are already
installed.

Once the dependencies are installed, simply run:

$ python setup.py install

Compression support (optional)

Compression can optionally be used for communication between the driver and Cassandra. There are
currently two supported compression algorithms: snappy (in Cassandra 1.2+) and LZ4 (only in Cassandra
2.0+). If either is available for the driver and Cassandra also supports it, it will be used automatically.

LZ4

$ pip install lz4

Snappy

$ pip install python-snappy

If using a Debian Linux derivative such as Ubuntu, it may be easier to just run .

$ apt-get install python-snappy

Metrics support (optional)

The driver has built-in support for capturing Cluster.metrics about the queries you run, however, the
scales library is required to support this:

$ pip install scales

Sorted sets support (optional)

Cassandra can store entire collections within a column. One of those collection types is a set. Cassandra’s
sets are actually ordered sets, but by default, the driver uses unordered sets to represent these collections.
If you would like to maintain the ordering, install the blist library:

$ pip install blist

https://pypi.python.org/pypi/pip
https://github.com/datastax/python-driver/blob/master/requirements.txt

Installation

8

Non-Python dependencies (optional)

he driver has several optional features that have non-Python dependencies.

C Extensions

By default, two C extensions are compiled: one that adds support for token-aware routing with the
Murmur3Partitioner and the other that allows you to use libev for the event loop, which improves
performance.

When installing manually through setup.py, you can disable both with the --no-extensions option, or
selectively disable one or the other with --no-murmur3 and --no-libev.

To compile the extensions, ensure that GCC and the Python headers are available.

On Ubuntu and Debian, this can be accomplished by running:

$ sudo apt-get install gcc python-dev

On RedHat and RedHat-based systems like CentOS and Fedora: $ sudo yum install gcc python-devel

On OS X, homebrew installations of Python should provide the necessary headers.

libev support

The driver currently uses Python’s asyncore module for its default event loop. For better performance,
libev is also supported through a C extension.

On Linux, you should be able to install libev through a package manager. For example, on Debian/
Ubuntu:

$ sudo apt-get install libev4 libev-dev

On RHEL/CentOS/Fedora:

$ sudo yum install libev libev-devel

On Mac OS X, you should be able to install libev through Homebrew. For example, on Mac OS X:

$ brew install libev

If successful, you should be able to build and install the extension (just using setup.py build or
setup.py install) and then use the libev event loop by doing the following:

from cassandra.io.libevreactor import LibevConnection
from cassandra.cluster import Cluster
cluster = Cluster()
cluster.connection_class = LibevConnection
session = cluster.connect()

Configuring SSL(optional)

Andrew Mussey has published a thorough guide on Using SSL with the DataStax Python driver.

http://blog.amussey.com/post/64036730812/cassandra-2-0-client-server-ssl-with-datastax-python

Writing your first client

9

Writing your first client

This section walks you through a small sample client application that uses the Python driver to connect to
a Cassandra cluster, print out some metadata about the cluster, execute some queries, and print out the
results.

Connecting to a Cassandra cluster
The Python driver provides a Cluster class which is your client application's entry point for connecting to a
Cassandra cluster and retrieving metadata.

Before you begin
This tutorial assumes you have the following software installed, configured, and that you have familiarized
yourself with them:

Apache Cassandra 1.2 or greater
Python 2.7.x

About this task

Before you can start executing any queries against a Cassandra cluster, you must set up an instance of
Cluster. As the name suggests, you typically have one instance of Cluster for each Cassandra cluster your
application interacts with.

In this tutorial, you use a Cluster object, to connect to a node in your cluster and then retrieves metadata
about the cluster and prints it out.

Procedure

1. In a text editor create a clients module.

a) Name the file clients.py.
b) Create a class SimpleClient.

class SimpleClient:

c) Add a session attribute.

session = None

d) Add a method, connect().
The connect method:

• builds a cluster object with the node IP address
• retrieves metadata from the cluster
• connects to the cluster
• prints out:

• the name of the cluster
• the datacenter, host name or IP address, and rack for each of the nodes in the cluster

def connect(self, nodes):
 cluster = Cluster(nodes)
 metadata = cluster.metadata
 self.session = cluster.connect()
 log.info('Connected to cluster: ' + metadata.cluster_name)

http://cassandra.apache.org/
http://www.python.org/

Writing your first client

10

 for host in metadata.all_hosts():
 log.info('Datacenter: %s; Host: %s; Rack: %s',
 host.datacenter, host.address, host.rack)

e) Add a method, close, to shut down the cluster object once you are finished with it.

def close(self):
 self.session.cluster.shutdown()
 log.info('Connection closed.')

f) In the module main function instantiate a SimpleClient object, call connect() on it, and then
close it.

def main():
 client = SimpleClient()
 client.connect(['127.0.0.1'])
 client.close()

g) Save the file and open a command prompt.

2. Run the clients module.

$ python clients.py

Code listing

The complete code listing illustrates:

• connecting to a cluster
• retrieving metadata and printing it out
• closing the connection to the cluster

#!/usr/bin/env python
-*- coding: utf-8 -*-

from cassandra.cluster import Cluster
import logging

log = logging.getLogger()
log.setLevel('INFO')

class SimpleClient(object):
 session = None

 def connect(self, nodes):
 cluster = Cluster(nodes)
 metadata = cluster.metadata
 self.session = cluster.connect()
 log.info('Connected to cluster: ' + metadata.cluster_name)
 for host in metadata.all_hosts():
 log.info('Datacenter: %s; Host: %s; Rack: %s',
 host.datacenter, host.address, host.rack)

 def close(self):
 self.session.cluster.shutdown()
 log.info('Connection closed.')

def main():
 logging.basicConfig()
 client = SimpleClient()
 client.connect(['127.0.0.1'])

Writing your first client

11

 client.close()

if __name__ == "__main__":
 main()

When run the client program prints out this metadata on the cluster's constituent nodes in the console
pane:

INFO:cassandra.cluster:New Cassandra host 127.0.0.3 added
INFO:cassandra.cluster:New Cassandra host 127.0.0.2 added
INFO:root:Connected to cluster: firkus
INFO:root:Datacenter: datacenter1; Host: 127.0.0.3; Rack: rack1
INFO:root:Datacenter: datacenter1; Host: 127.0.0.2; Rack: rack1
INFO:root:Datacenter: datacenter1; Host: 127.0.0.1; Rack: rack1

Using a session to execute CQL statements
Once you have connected to a Cassandra cluster using a cluster object, you retrieve a session, which
allows you to execute CQL statements to read and write data.

Before you begin
This tutorial uses a CQL3 schema which is described in a post on the DataStax developer blog. Reading
that post, could help with some of the new CQL3 concepts used here.

About this task

Getting metadata for the cluster is good, but you also want to be able to read and write data to the cluster.

This tutorial uses a CQL3 schema which is described in a post on the DataStax developer blog. For
reference, the schema is reproduced below, but reading that post, could help with some of the new CQL3
concepts used here. crea

CREATE KEYSPACE simplex WITH replication
= {'class':'SimpleStrategy', 'replication_factor':3};

CREATE TABLE simplex.songs (
 id uuid PRIMARY KEY,
 title text,
 album text,
 artist text,
 tags set<text>,
 data blob
);

CREATE TABLE simplex.playlists (
 id uuid,
 title text,
 album text,
 artist text,
 song_id uuid,
 PRIMARY KEY (id, title, album, artist)
);

The Python driver lets you execute CQL statements using a session object that you retrieve from the
Cluster object. You will add code to your client for:

• creating tables

http://www.datastax.com/dev/blog/cql3-for-cassandra-experts
http://www.datastax.com/dev/blog/cql3-for-cassandra-experts

Writing your first client

12

• inserting data into those tables
• querying the tables
• printing the results

You can execute queries by calling the execute() function on your session object. The session maintains
multiple connections to the cluster nodes, provides policies to choose which node to use for each query
(round-robin on all nodes of the cluster by default), and handles retries for failed queries when it makes
sense.

Session objects are thread-safe and usually a single session object is all you need per application.
However, a given session can only be set to one keyspace at a time, so one instance per keyspace is
necessary. Your application typically only needs a single cluster object, unless you're dealing with multiple
physical clusters.

Procedure

1. Add a method, create_schema(), to the SimpleClient class implementation.

def create_schema(self):

2. Add code to implement the new method which creates a new schema.

a) Execute a statement that creates a new keyspace.

Add to the create_schema() method:

self.session.execute("""
 CREATE KEYSPACE simplex WITH replication
 = {'class':'SimpleStrategy', 'replication_factor':3};
""")

In this example, you create a new keyspace, simplex.
b) Execute statements to create two new tables, songs and playlists.

Add to the create_schema() method:

self.session.execute("""
 CREATE KEYSPACE simplex WITH replication
 = {'class':'SimpleStrategy', 'replication_factor':3};
""")
self.session.execute("""
 CREATE TABLE simplex.songs (
 id uuid PRIMARY KEY,
 title text,
 album text,
 artist text,
 tags set<text>,
 data blob
);
""")
self.session.execute("""
 CREATE TABLE simplex.playlists (
 id uuid,
 title text,
 album text,
 artist text,
 song_id uuid,
 PRIMARY KEY (id, title, album, artist)
);
""")
log.info('Simplex keyspace and schema created.')

Writing your first client

13

3. Add an attribute function, load_data(), to the SimpleCient class implementation.

def load_data(self):

4. Add code to insert data into the new schema.

self.session.execute("""
 INSERT INTO simplex.songs (id, title, album, artist, tags)
 VALUES (
 756716f7-2e54-4715-9f00-91dcbea6cf50,
 'La Petite Tonkinoise',
 'Bye Bye Blackbird',
 'Joséphine Baker',
 {'jazz', '2013'}
);
""")
self.session.execute("""
 INSERT INTO simplex.playlists (id, song_id, title, album, artist)
 VALUES (
 2cc9ccb7-6221-4ccb-8387-f22b6a1b354d,
 756716f7-2e54-4715-9f00-91dcbea6cf50,
 'La Petite Tonkinoise',
 'Bye Bye Blackbird',
 'Joséphine Baker'
);
""")
log.info('Data loaded.')

5. In the class main function, add a call to the new create_schema() method.

client.create_schema()

6. Add a method, query_schema(), that executes a SELECT statement on the tables and then prints out
the results.

a) Add the method declaration.

def query_schema(self):

b) Add code to execute the query.
Query the playlists table for one of the two records.

results = self.session.execute("""
 SELECT * FROM simplex.playlists
 WHERE id = 2cc9ccb7-6221-4ccb-8387-f22b6a1b354d;
""")

The execute method returns a ResultSet that holds rows returned by the SELECT statement.
c) Add code to iterate over the rows and print them out.

print "%-30s\t%-20s\t%-20s\n%s" % \
 ("title", "album", "artist",
 "-------------------------------+-----------------------
+--------------------")
for row in results:
 print "%-30s\t%-20s\t%-20s" % (row.title, row.album, row.artist)
log.info('Schema queried.')

Writing your first client

14

7. In the module main function, add a call to the new query_schema() method.

client.query_schema()

8. Run the module.

$ python clients.py

Complete source code listing

#!/usr/bin/env python
-*- coding: utf-8 -*-

from cassandra.cluster import Cluster
import logging
import time

log = logging.getLogger()
log.setLevel('INFO')

class SimpleClient(object):
 session = None

 def connect(self, nodes):
 cluster = Cluster(nodes)
 metadata = cluster.metadata
 self.session = cluster.connect()
 log.info('Connected to cluster: ' + metadata.cluster_name)
 for host in metadata.all_hosts():
 log.info('Datacenter: %s; Host: %s; Rack: %s',
 host.datacenter, host.address, host.rack)

 def close(self):
 self.session.cluster.shutdown()
 log.info('Connection closed.')

 def create_schema(self):
 self.session.execute("""CREATE KEYSPACE simplex WITH replication =
 {'class':'SimpleStrategy', 'replication_factor':3};""")
 self.session.execute("""
 CREATE TABLE simplex.songs (
 id uuid PRIMARY KEY,
 title text,
 album text,
 artist text,
 tags set<text>,
 data blob
);
 """)
 self.session.execute("""
 CREATE TABLE simplex.playlists (
 id uuid,
 title text,
 album text,
 artist text,
 song_id uuid,
 PRIMARY KEY (id, title, album, artist)
);
 """)
 log.info('Simplex keyspace and schema created.')

Writing your first client

15

 def load_data(self):
 self.session.execute("""
 INSERT INTO simplex.songs (id, title, album, artist, tags)
 VALUES (
 756716f7-2e54-4715-9f00-91dcbea6cf50,
 'La Petite Tonkinoise',
 'Bye Bye Blackbird',
 'Joséphine Baker',
 {'jazz', '2013'}
);
 """)
 self.session.execute("""
 INSERT INTO simplex.playlists (id, song_id, title, album,
 artist)
 VALUES (
 2cc9ccb7-6221-4ccb-8387-f22b6a1b354d,
 756716f7-2e54-4715-9f00-91dcbea6cf50,
 'La Petite Tonkinoise',
 'Bye Bye Blackbird',
 'Joséphine Baker'
);
 """)
 log.info('Data loaded.')

 def query_schema(self):
 results = self.session.execute("""
 SELECT * FROM simplex.playlists
 WHERE id = 2cc9ccb7-6221-4ccb-8387-f22b6a1b354d;
""")
 print "%-30s\t%-20s\t%-20s\n%s" % \
 ("title", "album", "artist",
 "-------------------------------+-----------------------
+--------------------")
 for row in results:
 print "%-30s\t%-20s\t%-20s" % (row.title, row.album, row.artist)
 log.info('Schema queried.')

def main():
 logging.basicConfig()
 client = SimpleClient()
 client.connect(['192.168.153.159'])
 client.create_schema()
 time.sleep(10)
 client.load_data()
 client.query_schema()
 client.close()

if __name__ == "__main__":
 main()

Using prepared statements
The previous tutorial used simple CQL statements to read and write data, but you can also use prepared
statements, which only need to be parsed once by the cluster, and then bind values to the variables and
execute the prepared statement you read or write data to a cluster.

Writing your first client

16

About this task

In the previous tutorial, you added a load_data function which creates a new statement for each
INSERT, but you may also use prepared statements and bind new values to the columns each time before
execution. Doing this increases performance, especially for repeated queries. You add code to your client
for:

• creating a prepared statement
• creating a bound statement from the prepared statement and binding values to its variables
• executing the bound statement to insert data

Procedure

1. In your clients module, add a new class, BoundStatementsClient, which extends SimpleClass.

class BoundStatementsClient(SimpleClient):

2. Add an attribute method, prepare_statements(), and implement it.

a) Add the function declaration.

def prepare_statements():

b) Add two attributes, insert_song_prepared_statement and
insert_playlist_prepared_statement to hold references to the two prepared statements
you will use in the load_data() method.

c) In the prepare_statements method body add the following code:

self.insert_song_prepared_statement = self.session.prepare(
 """
 INSERT INTO simplex.songs
 (id, title, album, artist, tags)
 VALUES (?, ?, ?, ?, ?);
 """)
self.insert_playlist_prepared_statement = self.session.prepare(
 """
 INSERT INTO simplex.playlists
 (id, song_id, title, album, artist)
 VALUES (?, ?, ?, ?, ?);
 """)

Note: You only need to prepare a statement once per session.

3. Override the load_data function and implement it.

a) Add the function declaration.

def load_data(self):

b) Add code to bind values to the prepared statement's variables and execute it.
You use the bind function to bind values to the bound statement and then execute the bound
statement on the your session object..

tags = set(['jazz', '2013'])
self.session.execute(insert_song_prepared_statement,
 [UUID("756716f7-2e54-4715-9f00-91dcbea6cf50"),
 "La Petite Tonkinoise",
 "Bye Bye Blackbird",
 "Joséphine Baker",
 tags]

Writing your first client

17

)

Note that you cannot pass in string representations of UUIDs or sets as you did in the load_data
function.

4. Add code to insert data into the simplex.playlists table.

self.session.execute(bound_statement,
 [UUID("2cc9ccb7-6221-4ccb-8387-f22b6a1b354d"),
 UUID("756716f7-2e54-4715-9f00-91dcbea6cf50"),
 "La Petite Tonkinoise",
 "Bye Bye Blackbird",
 "Joséphine Baker"]
)

5. Add a call in the main() function to prepare_statements and load_data().

def main():
 logging.basicConfig()
 client = BoundStatementsClient()
 client.connect(['127.0.0.1'])
 client.create_schema()
 client.prepare_statements()
 client.load_data()
 client.query_schema()
 client.update_schema()
 client.drop_schema("simplex")
 client.close()

Python driver reference

18

Python driver reference

Reference for the Python driver.

Asynchronous I/O
You can execute statements on a session object in two different ways. Calling execute() blocks the
calling thread until the statement finishes executing, but a session also allows for asynchronous and non-
blocking I/O by calling the execute_async() function.

About this task

Create a super class of the SimpleClient class and execute queries asynchronously on a cluster.

Procedure

1. Add a new class, AsynchronousExample, to your clients module. It should extend the
SimpleClient class.

class AsynchronousExample(SimpleClient):

2. Override the attribute function, query_schema(), and implement it.

a) Add the function declaration.

def query_schema(self):

b) Execute the query asynchronously and store the returned ResponseFuture object.

response_future = self.session.execute_async("SELECT * FROM
 simplex.songs;")

c) register two callback functions with the ResponseFuture object.

response_future.add_callbacks(print_results, print_errors)

3. Implement the two callback functions, log_errors() and log_results().

def log_errors(errors):
 log.error(errors)

def print_results(results):
 print "%-30s\t%-20s\t%-20s%-30s\n%s" % \
 ("title", "album", "artist",
 "tags", "-------------------------------
+-----------------------+--------------------
+-------------------------------")
 for row in results:
 print "%-30s\t%-20s\t%-20s%-30s" % \
 (row.title, row.album, row.artist, row.tags)

4. In the module main function.

a) Instantiate an AsynchronousExample object.
b) Connect to your cluster.
c) Create the schema and load the data.

Python driver reference

19

d) Add a call to your new query_schema() function.

a) Drop the schema and close the connection.

def main():
 logging.basicConfig()
 client = AsynchronousExample()
 client.connect(['127.0.0.1'])
 client.create_schema()
 client.load_data()
 client.query_schema()
 client.drop_schema('simplex')
 client.close()

Of course, in our implementation, the call to getUninterruptibly blocks until the result set future has
completed execution of the statement on the session object. Functionally it is no different from
executing the SELECT query synchronously.

AsynchronousExample code listing

def print_errors(errors):
 log.error(errors)

def print_results(results):
 print "%-30s\t%-20s\t%-20s%-30s\n%s" % \
 ("title", "album", "artist",
 "tags", "-------------------------------+-----------------------
+--------------------+-------------------------------")
 for row in results:
 print "%-30s\t%-20s\t%-20s%-30s" % \
 (row.title, row.album, row.artist, row.tags)

class AsynchronousExample(SimpleClient):
 def query_schema(self):
 future_results = self.session.execute_async("SELECT * FROM
 simplex.songs;")
 future_results.add_callbacks(print_results, print_errors)

def main():
 logging.basicConfig()
 client = AsynchronousExample()
 client.connect(['127.0.0.1'])
 client.create_schema()
 client.load_data()
 client.query_schema()
 client.drop_schema('simplex')
 client.close()

if __name__ == "__main__":
 main()

Automatic failover
If a Cassandra node fails or becomes unreachable, the Python driver automatically and transparently tries
other nodes in the cluster and schedules reconnections to the dead nodes in the background.

Python driver reference

20

Description

How the driver handles failover is determined by which retry and reconnection policies are used when
building a cluster object.

Examples

This code illustrates building a cluster instance with a retry policy which sometimes retries with a lower
consistency level than the one specified for the query.

#!/usr/bin/env python
-*- coding: utf-8 -*-

from cassandra.cluster import Cluster
from cassandra.policies import DowngradingConsistencyRetryPolicy
from cassandra.policies import ConstantReconnectionPolicy

class RollYourOwnCluster:
 cluster = None
 session = None

 def __init__(self):
 self.cluster = Cluster(
 contact_points=['127.0.0.1', '127.0.0.2'],
 default_retry_policy=DowngradingConsistencyRetryPolicy(),
 reconnection_policy=ConstantReconnectionPolicy(20.0, 10)
)
 self.session = self.cluster.connect()

def main():
 client = RollYourOwnCluster()
 print('Connected to cluster: ' + client.cluster.metadata.cluster_name)
 client.session.shutdown()

if __name__ == "__main__":
 main()

CQL data types to Python types
A summary of the mapping between CQL data types and Python data types is provided.

Description

When retrieving the value of a column from a Row object, you use a getter based on the type of the
column.

Table 1: Python types to CQL data types

CQL data type Python type

ascii str

bigint int, long

blob buffer, bytearray

boolean bool

Python driver reference

21

CQL data type Python type

counter int, long

decimal decimal

double float

float float

inet str

int int

list list, tuple, generator

map dict, OrderedDict

set set, frozenset

text str

timestamp datetime.datetime

timeuuid uuid.UUID

uuid uuid.UUID

varchar str

varint int, long

CQL date and time data types

New CQL date and time data types are being introduced into an upcoming version of Cassandra.
This version of the driver includes support for those new types. Results with these types are returned
in new types provided in the cassandra.util module. While these types are similar to the built-in
datetime.time and datetime.date types, custom types were required to work around limitations in
precision (nanosecond for times) and range (outside the datetime.MINYEAR and datetime.MAXYEAR
constants for dates). The new types are described in the API documentation.

CQL data type Python data type

date datetime.date

time datetime.time

timestamp datetime.datetime

For non-prepared statements, the driver previously had an overloaded mapping, encoding dates as
timestamps in CQL. That overload is removed in support of these new date types. Conveniently,
CQL date literals are also acceptable timestamps, so this updated mapping should not require any
application updates.

Time utility functions

This release includes a number of utility functions for converting between (type 1) TimeUUID types and
native time representations:

cassandra.util.unix_time_from_uuid1
cassandra.util.datetime_from_uuid1
cassandra.util.min_uuid_from_time
cassandra.util.max_uuid_from_time

http://datastax.github.io/python-driver/api/cassandra/util.html#cassandra.util.Time

Python driver reference

22

cassandra.util.uuid_from_time

These are described in more detail in the util API documentation. The datetime_from_timestamp
function has been moved from its previous location in cassandra.cqltypes to the util module.
Although not officially part of the API, the old function remains as a pass-through (deprecated until the next
release).

Debugging

Enabling debug-level logging

Use the standard Python logging handlers.

Logging example

Logs debug-level statements to both the console and a file

from cassandra.cluster import Cluster
import logging

log = logging.getLogger()
log.setLevel('DEBUG')

fh = logging.FileHandler('mypyclient.log')
fh.setLevel('DEBUG')

ch = logging.StreamHandler()
ch.setLevel('DEBUG')

log.addHandler(fh)
log.addHandler(ch)

class SimpleClient(object):
 session = None

 def connect(self, nodes):
 cluster = Cluster(nodes)
 metadata = cluster.metadata
 self.session = cluster.connect()
 log.info('Connected to cluster: ' + metadata.cluster_name)
 for host in metadata.all_hosts():
 log.info('Datacenter: %s; Host: %s; Rack: %s', host.datacenter,
 host.address, host.rack)

 def close(self):
 self.session.cluster.shutdown()
 log.info('Connection closed.')

def main():
 logging.basicConfig()
 client = SimpleClient()
 client.connect(['127.0.0.1'])
 client.close()

if __name__ == "__main__":
 main()

Output

http://datastax.github.io/python-driver/api/cassandra/util.html
https://docs.python.org/2/howto/logging-cookbook.html

Python driver reference

23

Connecting to cluster, contact points: ['127.0.0.1']; protocol version: 2
Host 127.0.0.1 is now marked up
[control connection] Opening new connection to 127.0.0.1
Not sending options message for new connection(29244048) to 127.0.0.1 because
 compression is disabled and a cql version was not specified
Sending StartupMessage on <LibevConnection(29244048) 127.0.0.1:9042>
Sent StartupMessage on <LibevConnection(29244048) 127.0.0.1:9042>
Starting libev event loop
Got ReadyMessage on new connection (29244048) from 127.0.0.1
[control connection] Established new connection <LibevConnection(29244048)
 127.0.0.1:9042>, registering watchers and refreshing schema and topology
[control connection] Refreshing node list and token map using preloaded
 results
[control connection] Found new host to connect to: 172.31.15.148
New Cassandra host <Host: 172.31.15.148 Solr> discovered
Handling new host <Host: 172.31.15.148 Solr> and notifying listeners
Done preparing queries for new host <Host: 172.31.15.148 Solr>
Host 172.31.15.148 is now marked up
[control connection] Finished fetching ring info
[control connection] Rebuilding token map due to topology changes
[control connection] Attempting to use preloaded results for schema agreement
[control connection] Schemas match
[control connection] user types table not found
[control connection] Fetched schema, rebuilding metadata
Control connection created
Initializing new connection pool for host 172.31.15.148
Initializing new connection pool for host 127.0.0.1

Mapping user-defined types

Cassandra 2.1 introduces support for User-defined types User-defined types (UDT). A user-defined type
simplifies handling a group of related properties.

A quick example is a user account table that contains address details described through a set of columns:
street, city, zip code. With the addition of UDTs, you can define this group of properties as a type and
access them as a single entity or separately.

User-defined types are declared at the keyspace level.

In your application, you map your UDTs to application entities. For example, given the following UDT:

CREATE TYPE complex.address (
 street text,
 city text,
 zip int,
 phones list<text>
);

You create a Python class to map it to:

class Address:
 street = None
 city = None
 zip_code = None
 phones = None

 def __init__(self, street = None, city = None, zip_code = None, phones =
 None):
 self.street = street

/en/cql/3.1/cql/cql_reference/cqlRefUDType.html

Python driver reference

24

 self.city = city
 self.zip_code = zip_code
 self.phones = phones

Using the UDT in your client

This example builds on the SimpleClient application developed earlier.

In your application, you then map the UDT by class and use it:

#!/usr/bin/env python
-*- coding: utf-8 -*-

from clients import SimpleClient

from uuid import UUID

class Address:
 street = None
 city = None
 zip_code = None
 phones = None

 def __init__(self, street = None, city = None, zip_code = None, phones =
 None):
 self.street = street
 self.city = city
 self.zip_code = zip_code
 self.phones = phones

class UsingUDTs(SimpleClient):
 def load_data(self):
 self.session.execute(
 """
 CREATE KEYSPACE complex WITH replication
 = {'class':'SimpleStrategy', 'replication_factor':3};
 """)
 self.session.execute(
 """
 CREATE TYPE complex.address (
 street text,
 city text,
 zip_code int,
 phones list<text>);
 """)
 self.session.execute(
 """
 CREATE TABLE complex.users (
 id uuid PRIMARY KEY,
 name text,
 addresses map<text, frozen<address>>);
 """)

 def insert_address(self):
 # register UDT
 self.cluster.register_user_type("complex", "address", Address)
 # use the UDT in a query
 self.insert_user_prepared_statement = self.session.prepare(
 """
 INSERT INTO complex.users (id, name, addresses)
 VALUES (:id, :name, :addresses);
 """)

Python driver reference

25

 address = Address('123 Arnold Drive', 'Sonoma', 95476,
 ['707-555-1234', '800-555-9876'])
 addresses = { 'Home' : address }
 bound_statement = self.insert_user_prepared_statement.bind(
 { 'id' : UUID('756716f7-2e54-4715-9f00-91dcbea6cf50'), 'name' :
 'John Doe', 'addresses' : addresses }
)
 self.session.execute(bound_statement)

def main():
 client = UsingUDTs()
 client.connect(['127.0.0.1'])
 client.load_data()
 client.insert_address()

if __name__ == "__main__":
 main()

Metadata refresh controls

As of version 2.5, the driver includes some new controls for specifying how (or if) cluster metadata is
refreshed in response to native protocol events on the control connection. Two new Cluster attributes have
been added:

schema_event_refresh_window
topology_event_refresh_window

This feature is of most interest to users operating the driver in a high fanout from Cassandra nodes to
client instances. Previously, the driver would react to these events at a fixed interval, in effect causing a
thundering herd problem as many instances refreshed parts of the metadata at the same time. Now, this
reaction is smoothed out by randomizing the interval within a configured window. Additionally, if redundant
events arrive inside of that window, the driver is able to de-duplicate refreshes.

Finally, these controls are used to disable refreshes for one or both types of events. This may be useful for
high-fanout deployments where the pertinent schema is static, or the application is not expected to react to
schema changes without restart.

More details on these parameters can be found in the API documentation.

Named parameters

You can bind the parameters in a BoundStatement or SimpleStatement either by the marker position
or by named marker. The example here builds on the BoundStatementsClient developed earlier.

from clients import BoundStatementsClient

from uuid import UUID

class ByPositionAndByName(BoundStatementsClient):
 def load_data_bound_by_position(self):
 self.insert_user_prepared_statement = self.session.prepare(
 """
 INSERT INTO simplex.songs (id, title, album, artist)
 VALUES (?, ?, ?, ?);
 """)
 # bind parameters by position

http://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Cluster.schema_event_refresh_window

Python driver reference

26

 self.session.execute(self.insert_user_prepared_statement,
 [UUID("756716f7-2e54-4715-9f00-91dcbea6cf50"),
 "Lazing on a Sunday Afternoon",
 "A Night at the Opera",
 "Queen"
]
)

 def load_data_bound_by_name(self):
 self.insert_user_prepared_statement = self.session.prepare(
 """
 INSERT INTO simplex.songs (id, title, album, artist)
 VALUES (:id, :title, :album, :artist);
 """)
 # bind parameters by name
 bound_statement = self.insert_user_prepared_statement.bind(
 { 'id' : UUID('e0e03270-1e6f-11e4-8c21-0800200c9a66'),
 'title' : 'Coconut',
 'album' : 'Nilsson Schmilsson',
 'artist' : 'Harry Nilsson' }
)
 self.session.execute(bound_statement)

def main():
 client = ByPositionAndByName()
 client.connect(['127.0.0.1'])
 client.create_schema()
 client.load_data_bound_by_position()
 client.load_data_bound_by_name()

if __name__ == "__main__":
 main()

Object-mapping package
The driver includes cqlengine, a CQL object-mapping package for Python.

The cqlengine package was a standalone project, but it is now integrated into the driver.

Upgrading to the integrated cqlengine should be painless and simple. The existing API and functionality
of cqlengine has been retained. Most applications will only need to remove the legacy package and
update import locations. There is one minor functional change and a number of deprecations. Anyone
upgrading is encouraged to consult the upgrade guide for details.

While efforts were taken to leave most of the existing functionality unchanged, there are a few new
features. Most notably, there is now support for modeling User Defined Types (introduced in Cassandra
2.1). There are also a number of new functions for simplified connection and keyspace management.
Please consult the API documentation for further detail.

Passing parameters to CQL queries
When executing non-prepared statements, the driver supports two forms of parameter place-holders:
positional and named.

Positional

Positional parameters are used with a %s placeholder. For example, when you execute:

session.execute (

http://datastax.github.io/python-driver/cqlengine/upgrade_guide.html
/en/cql/3.1/cql/cql_reference/cqlRefUDType.html
http://datastax.github.io/python-driver/api/index.html#object-mapper

Python driver reference

27

 """
 INSERT INTO users (name, credits, user_id)
 VALUES (%s, %s, %s)
 """ ("John O'Reilly" , 42 , uuid . uuid1 ())
)

It is translated to the following CQL query:

INSERT INTO users (name, credits, user_id)
VALUES ('John O''Reilly', 42, 2644bada-852c-11e3-89fb-e0b9a54a6d93)

You must use %s for all types of arguments, not just strings. For example, this would be wrong:

session.execute("INSERT INTO USERS (name, age) VALUES (%s, %d)",
 ("bob", 42)) # wrong

Instead, use %s for the age placeholder.

If you need to use a literal % character, use %%.

You must always use a sequence for the second argument, even if you are only passing in a single
variable:

session.execute("INSERT INTO foo (bar) VALUES (%s)" , "blah") #
 wrong
session.execute("INSERT INTO foo (bar) VALUES (%s)" , ("blah")) #
 wrong
session.execute("INSERT INTO foo (bar) VALUES (%s)" , ("blah" ,)) #
 right
session.execute("INSERT INTO foo (bar) VALUES (%s)" , ["blah"]) #
 right

Note: The second line is incorrect because in Python, single-element tuples require a comma.

Named

Named place-holders use the %(name)s form:

session.execute(
 """
 INSERT INTO users (name, credits, user_id, username)
 VALUES (%(name)s, %(credits)s, %(user_id)s, %(name)s)
 """
 {'name' : "John O'Reilly" , 'credits' : 42 , 'user_id' : uuid . uuid1
 ()}
)

You can repeat placeholders with the same name, such as %(name)s in the above example, but only data
values should be supplied this way. Other items, such as keyspaces, table names, and column names
should be set ahead of time (typically using normal string formatting).

Python driver reference

28

Tuple types

Cassandra 2.1 introduced the tuple type for CQL. For the following table: A tuple is a fixed-length set of
typed positional fields.

CREATE TABLE tuple_test (
 the_key int PRIMARY KEY,
 the_tuple frozen<tuple< int, text, float>>)

You access the tuple column in Python like this:

#!/usr/bin/env python
-*- coding: utf-8 -*-

from clients import SimpleClient

class TestTuples(SimpleClient):
 def create_schema(self):
 super(TestTuples, self).create_schema()
 self.session.execute(
 """
 CREATE TABLE simplex.tuple_test (
 the_key int PRIMARY KEY,
 the_tuple tuple<int, text, float>)
 """)

 def insert_tuple(self):
 the_tuple = (0, 'abc', 1.0)
 prepared = self.session.prepare("INSERT INTO
 simplex.tuple_test(the_key, the_tuple) VALUES (?, ?);")
 self.session.execute(prepared, parameters=(1, the_tuple))

def main():
 client = TestTuples()
 client.connect(['127.0.0.1'])
 client.create_schema()
 client.insert_tuple()
 client.pause()
 client.drop_schema("simplex")

if __name__ == "__main__":
 main()

Note: This example builds off the SimpleClient application developed earlier.

/en/cql/3.1/cql/cql_reference/tupleType.html

FAQ

29

FAQ

• Is there a distinction between different hosts?
• Are there plans to allow for a retry policy option at the execute() or execute_async() methods?

Is there a distinction between different hosts?
For example, if you try an operation and the host goes down, do the retry policies re-use the same host
or do they use another one? Is there any control over this decision? Presently retry is only done on the
same host (not because it was down, but because it responded with a Coordinator timeout or unavailable
exception).

Are there plans to allow for a retry policy option for the execute() or
execute_async() methods?

Currently I can use the same prepared statements in multiple contexts, but sometimes I may want to retry
an insert a few times and other times it may be better to do so higher up in the application The default
policy is specified at the cluster level, but each statement can have its own.

/en/developer/python-driver/2.5/python-driver/pdFaq.html#faq-distinction-between-hosts
/en/developer/python-driver/2.5/python-driver/pdFaq.html#faq-retry-polict-execute

API reference

30

API reference

DataStax Python Driver for Apache Cassandra.

http://docs.datastax.com/en/drivers/python/2.5

Tips for using DataStax documentation

31

Tips for using DataStax documentation

Navigating the documents

To navigate, use the table of contents or search in the left navigation bar. Additional controls are:

Hide or display the left navigation.

Go back or forward through the topics as listed in
the table of contents.

Toggle highlighting of search terms.

Print page.

See doc tweets and provide feedback.

Grab to adjust the size of the navigation pane.

Appears on headings for bookmarking. Right-click
the ¶ to get the link.

Toggles the legend for CQL statements and
nodetool options.

Other resources

You can find more information and help at:

• Documentation home page
• Datasheets
• Webinars
• Whitepapers
• Developer blogs
• Support

http://docs.datastax.com/en/index.html
http://www.datastax.com/resources/datasheets
http://www.datastax.com/resources/webinars
http://www.datastax.com/resources/whitepapers
http://www.datastax.com/dev/blog
http://www.datastax.com/what-we-offer/products-services/support

	Contents
	About the Python driver
	Architectural overview
	The driver and its dependencies
	Optional non-Python dependencies

	Installation
	Writing your first client
	Connecting to a Cassandra cluster
	Using a session to execute CQL statements
	Using prepared statements

	Python driver reference
	Asynchronous I/O
	Automatic failover
	CQL data types to Python types
	Debugging
	Enabling debug-level logging

	Mapping user-defined types
	Metadata refresh controls
	Named parameters
	Object-mapping package
	Passing parameters to CQL queries
	Tuple types

	FAQ
	Is there a distinction between different hosts?
	Are there plans to allow for a retry policy option for the execute() or execute_async() methods?

	API reference
	Using the docs

