
C* Upgrades at Scale
Ajay Upadhyay & Vinay Chella
Data Architects

Who are We??
● Cloud Database Engineering [CDE]

● Providing Cassandra, Dynomite, Elastic

Search and other data stores as a

service

● Ajay Upadhyay

○ Data Architect @ Netflix

● Vinay Chella

○ Data Architect @ Netflix

○ https://www.linkedin.com/in/vinaykumarchella

https://www.linkedin.com/in/vinaykumarchella
https://www.linkedin.com/in/vinaykumarchella

● About Netflix

● Cassandra @ Netflix

● What is our C* scale ??

● What do we upgrade, Why?

● How does it impact applications and services

● What makes C* upgrades smoother??

● Infrastructure for upgrade

● Online Upgrade process

● Pappy framework

● Migration Hiccups/ Roadblocks

Agenda

4

● Started as DVD rental

● Internet delivery/ streaming of TV shows and movies directly on TVs,

computers, and mobile devices in the United States and internationally

About Netflix

Cassandra @ Netflix
● 90% of streaming data is stored in Cassandra

● Data ranges from customer details to Viewing history to streaming

bookmarks

● High availability, Multi-region resiliency and Active-Active

What is our scale (C* Footprint)

235

What is our scale (C* Footprint) Continue...

7000+

Duration of the upgrade???

What do we upgrade??

● Software
○ Cassandra
○ Priam
○ OS
○ Other sidecars

● Hardware
○ AWS instance types

What do we upgrade, Why?
Continue...

Why new release (C* 2.0)? What’s
wrong with (1.2)?

What do we upgrade, Why?

continues...

● Typically nothing wrong with

current release (in this case 1.2…)

● Pretty stable and few clusters are

still running current release

without any issues

● Still supported by Datastax but

new features and bug fixes are not

being done any more

● End of life cycle

What do we upgrade, Why?

continues...

● Good to be on latest and stable
release

● Lots of great features
● Bug fixes and enhancements / new

features are being only added to
the latest release

Application and service level impact/change

● Before Migration

● During migration

● After migration

Application and service level impact/change

● None, if app is using latest Netflix
OSS components (Astyanax/
BaseServer)

During the upgrade???

What makes C* upgrades smoother
and transparent

How do we certify a binary??

Functionality….

Is any existing functionality broken?

How do we certify a binary for the final upgrade

Simulate PROD

● Use pappy framework to simulate
prod traffic on test clusters

● Soak it, make sure traffic pattern is
same in terms of R/W OPS,
storage and AWS instance type

How do we certify a binary for the final upgrade

Typical usage patterns:

● Read Heavy
● Write Heavy
● STCS
● LCS
● Aggressive TTLs
● Variable Payloads

How do we certify a binary for the final upgrade
continues...

During Upgrade:

● Start upgrading one of the clusters
to new release, keeping same
traffic

● Any issues, get new patch, redo
whole migration

● Process is fully automated, takes
few minutes to couple of hours to
redo entire test

Summary

● Functional validation
● Performance testing
● Load test with routine

maintenance tasks
○ Repair and Compaction
○ Replacement and Restarts

● Key Metrics Used
○ 95th and 99th Latencies
○ Dropped Metrics on C*
○ Exceptions on C*
○ Heap Usage on C*
○ Threads Pending on C*

How do we certify a binary for the final upgrade
continues...

Infrastructure for upgrade...

● Health Monitoring Jobs
● Regular Maintenance Jobs

○ Repairs
○ Compactions

● Upgrades
○ Sizing
○ Instance Types
○ OS
○ Sidecar
○ C*

Infrastructure for upgrade...

Online upgrade process (steps)

Pre-Upgrade:

1. Check for the forgotten files

2. Check for currently running (maintenance) jobs

3. Disable all the maintenance jobs until the duration of upgrade process

a. Compact

b. Repair

c. Terminate

4. Disable Monkeys

5. Download the DSE tarball

6. Make sure that the cluster is healthy before starting upgrade

Online upgrade process (steps)

Upgrade:

● Running binary upgrade of Priam and C* on a node

○ Continue to make sure that the cluster is still healthy

○ Disable node in Eureka

○ Disable thrift, gossip and run nodetool drain

○ Stop Cassandra and Priam

○ Install new C* package (tarball)

○ Make sure the cluster is still healthy

■ Disable/Enable gossip if new node does not see all others vice-versa

○ Verify “nodetool version”

● Make sure the cluster is still healthy before next step

Online upgrade process (steps)

Post-Upgrade:

1. Alter CF settings (for all Keyspace/CF): speculative_retry = 'NONE' and

index_interval = 256

2. Run SSTABLE Upgrade on all nodes (STCS - parallel, LCS - Serial)

3. Enable Chaos Monkey

4. Make sure the cluster is still healthy before considering the upgrade done

Online upgrade process

One node at a time - parallelly in all regions

One zone at a time - parallely in all regions

One zone at a time??

Binary upgrades??
Why not replacements??

Dual Writes - Forklift (Pappy Framework)

● For short lived data and big clusters

● Astyanax - Dual Writes

● C* Forklifter - Pappy Framework

Click of a button (Just 1 button….)

What about performance??

Pappy Framework…..

What is Pappy??

● CDE’s new Test harness framework

● Helps CDE moving fast with load / performance tests

● Netflix homegrown: Governated, well integrated with netflix OSS

infrastructure (Archaius, Servo, Eureka and Karyan)

● Side by side comparison of different performance runs

High level features

● Collects metrics for

○ Various Instance types comparison

○ Varying data models in terms of payload, shard and comparators

○ Different driver(s) versions

● Pluggable architecture enables working with various datastores (Cassandra,

Dyno, ES etc.,)

Architecture

Performance testing...

● More than 10 rounds of performance testing

● Yaml tuning

○ Read heavy - Write heavy

○ Write heavy

○ Read heavy

Test Setup #1

Row Size: 1KB (size-100*cols-10)

Data Size: 30GB (Keys: 20,000,000)

Read: 4K (3.6 K)

Writes: 1 K (700)

Instance: i2.xl (4 CPU, 30 GB RAM)

Nodes: 6

Region: Us-East

Read CL CL_ONE

Write CL CL_ONE

Heap 12 GB / Newgen: 2GB

Test Setup #1 - Results

Test Setup #1 C* 1.2 C* 2.0

ROps 3.1 K - 4.0 K / sec 2.6 - 3.5 K/ sec

WOps 710 /sec 730 /sec

Read 95th 2.25k micro 2.89k micro

Read 99Th 3.6k micro 4.7k micro

Write 95th 720 micro 770 micro

Write 99Th 890 micro 1.01 k micro

Data / Node 30 - 36 GB 30 - 36 GB

Read Metrics

Write Metrics

Summary….

Metrics Test Setup #1(12G Heap/ 30G) Test Setup #2(8GB Heap/~30G) Test Setup #3 (8GB Heap/ 60GB data)

C* 1.2 C* 2.0 C* 1.2 C* 2.0 C* 1.2 C* 2.0

ROps 3.1K - 4.0K/ sec 2.6 - 3.5 K/ sec 3.5K - 4.0K/ sec 3.0 - 3.5 K/ sec 2.5 K - 3.5 K / sec 2.0 K - 3.0 K/ sec

WOps 710 /sec 730 /sec 720 /sec 710 /sec 700 /sec 620 /sec

Read 95th 2.25k micro 2.89k micro 1.7k micro 2.1k micro 2.4k micro 3.5k micro

Read 99Th 3.6k micro 4.7k micro 2.6k micro 3.7k micro

9.0k micro (spikes

20k)

9.5k micro (spikes

19K)

Write 95th 720 micro 770 micro 730 micro 910 micro 730 micro 820 micro

Write 99Th 890 micro 1.01 k micro 910 micro 1.2 k micro 940 micro 1.1 k micro

Data / Node 30 - 36 GB 30 - 36 GB 30 - 36 GB 30 - 36 GB 60 GB 60 GB

Wave - 2 Testing

1. speculative_retry (New feature in 2.0)

2. For low connections, use rpc_server_type = sync

3. index_interval = 256 --> default value has changed.

4. internode_compression = all

5. memtable_flush_writers: 4

6. newgen -> 800mb

7. Heap: 12 GB - 2 GB(new gen)

8. read_repair_chance=0 and dclocal_read_repair_chance = 0

Test Setup #5 - Results (Duration: 2 Days)

Test Setup #5 C* 1.2 C* 2.0
ROps 3.8 K / sec 3.8 K/ sec
WOps 198 /sec 198 /sec

Read 95th 7.01k micro 5.89k micro

Read 99Th 27.3k micro (spikes upto 80k) 15.2k micro (spikes upto 60 k)
Read Avg 2.15 2.04

Write 95th 755 micro 895 micro

Write 99Th 961 micro 1.1 k micro
Write Avg 396 444
Data / Node 60 GB 60 GB

Test Case #5: Read 95th and 99th

Test Case #5: Write 95th and 99th

Teams Engaged

● Performance Team

● Several Application Teams

Few Migration Hiccups/ Roadblocks

● InterNodeEncryption = ‘ALL’ => why do we need this?

○ https://issues.apache.org/jira/browse/CASSANDRA-8751

● Hints causing Heap disaster

○ https://issues.apache.org/jira/browse/CASSANDRA-8485.

https://issues.apache.org/jira/browse/CASSANDRA-8485
https://issues.apache.org/jira/browse/CASSANDRA-8485

is
Hiring

jobs.netflix.com/#/jobs/1953/
or

jobs.netflix.com

