SEATTLE CASSANDRA USERS JUNE 2015

INTRODUCTION TO DATA
MODELLING

Aaron Morton
@aaronmorton
Co-Founder & Team Member

LAST PICKLE

ee

http://creativecommons.org/licenses/by-nc/3.0/nz/
http://creativecommons.org/licenses/by-nc/3.0/nz/

Example |
-xample 2
[he other stuft.

“It’s a like SQL, you just need
to think about things more.

But it stores massive amounts
of data.Which is nice.’

txample |

Stock Market Data

exchange lable

CREATE TABLE exchange (
exchange 1d text,

name text,

city text,
PRIMARY KEY (exchange 1d)
) ;

lables.

Primary Key

Strong Typing

Pre defined Column names

All non Primary Key Columns optional

lables, But.

Sparse Layout
No Foreign Keys
No Joins

No Constraints

No ALTERTABLE locks
No Type Casting on ALTERTABLE

exchange

CREATE TABLE exchange (
exchange 1d text,

name text,

city text,
PRIMARY KEY (exchange 1d)
) ;

Data lypes

ascii, text, varchar inet

int, bigint, varint list, map, set
blob timestamp
boolean timeuuid, uuid
counter tuple

decimal, double, float

exchange lable

CREATE TABLE exchange (
exchange 1d text,

name text,

city text,
PRIMARY KEY (exchange 1d)
) ;

Primary Key

PRIMARY KEY (PARTITION KEY,
CLUSTERING KEY, CLUSTERING KEY,..)

Partition

A Partition is a storage engine row.

Rows with the same Partition Key
are in the same Partition.

cqlsn

$ bin/cqlsh

Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 2.1.2 | CQL spec 3.2.0 |
Native protocol v3]

Use HELP for help.

cqlsh>

exchange lable In Action

INSERT INTO
exchange
(exchange 1d, name, city)
VALUES
(‘'nyse', 'New York Stock Exchange', 'New York');

exchange lable In Action

SELECT
*

FROM
exchange
WHERE

exchange 1d = ‘nyse’;

nyse | New York | New York Stock Exchange

exchange lable In Action

DELETE FROM
exchange
WHERE
exchange 1d = 'nyse’;

Table Scan Antl Pattern

SELECT
*

FROM
exchange;

nyse | New York | New York Stock Exchange

stock Table

CREATE TABLE stock (
exchange 1d text
ticker text,

hame text
4
sector Text,

PRIMARY KEY ((exchange 1d, ticker))
) ;

stock lable In Action

INSERT INTO
stock
(exchange 1d, ticker, name, sector)
VALUES
(‘nyse', 'tlp', 'The Last Pickle', 'awesomeness');

stock Table In Action
SELECT
X

FROM
stock
WHERE
exchange 1d = ‘nyse’ AND ticker = 'tlp';

exchange i1d | ticker | name | sector

Primary Key Restrictions
SELECT
X

FROM
stock
WHERE
exchange 1d = 'nyse’;

code=2200 [Invalid query] message="Partition key part
ticker must be restricted since preceding part 1s"

stock ticker lable

CREATE TABLE stock ticker (

eXChange_id text, Standard comments
ticker text, —'
date int, // YYYYMMDD
eod price int,

PRIMARY KEY ((exchange 1d, ticker), date)

) ;
Clustering Key

Multiple Rows Per Partition.
Rows with the same Partition Key

are in the same Partition.

Multiple Rows Per Partition.
Rows in the same Partition are
identified by their Clustering Key(s).

Multiple Rows Per Partition.

lTogether the Partition Key and
Clustering Key(s) form the Primary
Key that identifies a Row.

Primary Key

PRIMARY KEY ((exchange 1d, ticker), date)

Clustering Key

stock ticker Table In Action

INSERT INTO

stock ticker

(exchange 1d, ticker, date, eod price)
VALUES

(‘nyse', 'tlp', 20150110, 100);
INSERT INTO

stock ticker

(exchange 1d, ticker, date, eod price)
VALUES

(‘nyse', 'tlp', 20150111, 110);
INSERT INTO

stock ticker

(exchange 1d, ticker, date, eod price)
VALUES

(‘nyse', 'tlp', 20150112, 80);

stock ticker Table In Action
SELECT
>

FROM

stock ticker
WHERE

exchange 1d = 'nyse' AND ticker = 'tlp' and date =
20150110;

exchange 1d | ticker | date | eod price

stock ticker Table In Action

SELECT
X
FROM
stock ticker
WHERE
exchange 1d = 'nyse' AND ticker = ‘tlp’;
exchange 1d | ticker | date | eod price
------------- e e S L
nyse | tlp | 20150110 | 100
nyse | tlp | 20150111 | 110

nyse | tlp | 20150112 | 80

stock ticker Table In Action
SELECT
X

FROM

stock ticker
WHERE

exchange 1d = 'nyse' AND ticker = 'tlp'
ORDER BY

date desc;
exchange i1d | ticker | date | eod price
------------- IR ek s
nyse | tlp | 20150112 | 80
nyse | tlp | 20150111 | 110

nyse | tlp | 20150110 | 100

Reversing [he Stock [icker lable

CREATE TABLE stock ticker (
exchange 1d text,
ticker text,

date int, // YYYYMMDD
number traded 1int,

PRIMARY KEY ((exchange id, ticker), date)

)
WITH CLUSTERING ORDER BY (date DESC);

stock ticker Table In Action

SELECT
X
FROM
stock ticker
WHERE
exchange 1d = 'nyse' AND ticker = ‘tlp' AND date > 20150110;
exchange i1d | ticker | date | eod price
------------- R Lt (LIRS PR
nyse | tlp | 20150112 | 80

nyse | tlp | 20150111 | 110

So Far;

Tables with Columns

Data lypes

Partitions and Clustering
Clustering Order
Table Properties

-xample |

Example 2
[he other stuft.

Data Modelling Guidelines.
Denormalise by creating

materialised views that support
the read paths of the
application.

Data Modelling Guidelines.

Constrain the Partition Size by
time or space.

Data Modelling Guidelines.
Solve problems with the read

path of your application in the
write path.

Example 2

Vehicle Tracking

A “Black Box™ on Vehicles sends position,
speed, etc every 30 seconds via mobile
networks.

Requirements

|. Lookup vehicle details by vehicle 1d.

2. Get data points for a time slice by
vehicle 1d.

3. Get distinct days a vehicle has been
active by vehicle 1d.

Data Model Planning - Requirement |

Vehicle sounds like a simple
entity identified by
vehicle 1d.

Data Model Planning - Requirement 2

Sounds like a (potentially
infinite) Time Series of data per
vehicle 1d.

Data Model Planning - Requirement 3

Is a summary of Time Series
data per vehicle 1d

Keyspace == Database
create keyspace

trak u like

WITH REPLICATION =

{
'class': 'NetworkTopologyStrateqgy',
'datacenterl' : 3

}s

use trak u like;

vehicle lable

CREATE TABLE vehicle (

vehicle 1d text,

make text,

model text,

acclidents list<text>,
drivers set<text>,
modifications map<text, text>,

PRIMARY KEY (vehicle 1d)
) ;

Collection Types

CQL 3 Spec...
“Collections are meant for storing/

denormalizing relatively small amount
of data.

vehicle Table In Action

INSERT INTO
vehicle
(vehicle 1d, make, model, drivers, modifications)
VALUES
(‘wigl23', 'Big Red', 'Car',
{'jeft', "anthony'},
{'wheels' : 'mag wheels'});

vehicle Table In Action

SELECT
*

FROM
vehicle
WHERE
vehicle 1d = ‘wigl23‘';

vehicle 1d | accidents | drivers | make | model | modifications
------------ Rk T T LR

wigl23 | null | {'"anthony', 'jeff'} | Big Red | Car | {'wheels': 'mag wheels'}

vehicle Table In Action

UPDATE

vehicle
SET

accldents = accidents + ['jeff crashed i1into dorothy 2015/01/21']
where

vehicle 1d = 'wigl23‘';

vehicle Table In Action

SELECT

vehicle 1d, accidents, drivers
FROM

vehicle
WHERE

vehicle 1d = ‘wigl23‘';

vehicle 1d | accidents | drivers
____________ e

wigl23 | ['jeff crashed into dorothy 2015/01/21'] | {'anthony', 'jeff'}

vehicle Table In Action

UPDATE

vehicle
SET

drivers = drivers - {'jeff'}
where

vehicle 1d = 'wigl23’;

vehicle Table In Action

SELECT

vehicle 1d, accidents, drivers
FROM

vehicle
WHERE

vehicle 1d = 'wigl23‘';

vehicle 1d | accidents | drivers
____________ e

wigl23 | ['jeff crashed into dorothy 2015/01/21'] | {'anthony'}

data_point lable

CREATE TABLE data point (

vehicle 1d text,

day int,
sequence timestamp,
Llatitude double,
Llongitude double,
heading double,
speed double,
distance double,

PRIMARY KEY ((vehicle id, day), sequence)

)
WITH CLUSTERING ORDER BY (sequence DESC);

Bucketing the data_point lable

PRIMARY KEY ((vehicle 1d, day), sequence)
WITH CLUSTERING ORDER BY (sequence DESC);

All data points for one day are stored in the
same partition.

Each Partition will have up to 2,880 rows.

data_point lable In Action

INSERT INTO
data point
(vehicle 1d, day, sequence, latitude, longitude, heading, speed, distance)
VALUES
(‘'wigl23', 20150120, '2015-01-20 09:01:00', -41, 174, 270, 10, 500);

INSERT INTO
data point
(vehicle 1d, day, sequence, latitude, longitude, heading, speed, distance)
VALUES
(‘wigl23', 20150120, '2015-01-20 09:01:30', -42, 174, 270, 10, 500);

data_point lable In Action

SELECT
vehicle 1d, day, sequence, latitude, longitude
FROM
data point
WHERE
vehicle 1d = 'wigl23' AND day = 20150120;
vehicle i1id | day | sequence | latitude | longitude
------------ T T S I
wigl23 | 20150120 | 2015-01-20 09:02:30+1300 | -44 | 174
wigl23 | 20150120 | 2015-01-20 09:02:00+1300 | -43 | 174

wigl23 | 20150120 | 2015-01-20 09:01:30+1300 | |
wigl23 | 20150120 | 2015-01-20 09:01:00+1300 | 41 | 174

data_point lable In Action

SELECT

vehicle 1d, day, sequence, latitude, longitude

FROM
data point
WHERE

vehicle 1d = 'wigl23' AND day in (20150120, 20150121);

vehicle 1d | day

____________ I
wigl23 | 20150120
wigl23 | 20150120
wigl23 | 20150120
wigl23 | 20150120
wigl23 | 20150121
wigl23 | 20150121

seguence

2015-01-20
2015-01-20
2015-01-20
2015-01-20
2015-01-21
2015-01-21

:30+1300
:00+1300
:30+1300
:00+1300
:30+1300
:00+1300

active_day lable
CREATE TABLE active day (

vehicle 1d text,
day int,
distance counter,

PRIMARY KEY (vehicle 1d, day)
)
WITH
CLUSTERING ORDER BY (day DESC)
AND
COMPACTION =
1

}

'class' : 'LeveledCompactionStrategy'

active_day lable In Action

UPDATE

active day
SET

distance = distance + 500
WHERE

vehicle 1d = 'wigl23' and day

20150120,

UPDATE

active day
SET

distance = distance + 500
WHERE

vehicle 1d = 'wigl23' and day

20150120,

active_day lable In Action

SELECT
X
FROM
active day
WHERE
vehicle 1d = 'wigl23‘';
vehicle i1id | day | distance
____________ L
wigl23 | 20150121 | 1000

wigl23 | 20150120 | 2000

active_day lable In Action

SELECT
*

FROM

active day
WHERE

vehicle 1d = 'wigl23’
LIMIT 1;

vehicle 1d | day | distance
____________ - e e e e e e e e e e e e e e e - - - -

wigl23 | 20150121 | 1000

“It’s a like SQL, you just need
to think about things more.

But it stores massive amounts
of data.Which is nice.’

-xample |
-xample 2

And now the other stuff.

Light VWeight [ransactions
Static Columns
Indexes

Light Weight [ransactions
Uses Paxos

Added in 2.0.

Light Weight [ransactions
Provide linearizable

consistency, similar to SERIAL
Transaction Isolation.

Light Weight Transactions
Use Sparingly.
Impacts Performance and
Availability.

Light Weight [ransactions

CREATE TABLE user (
user name text,

password text,
PRIMARY KEY (user name)

) ;

Insert If Not Exists

INSERT INTO

user

(user name, password)
VALUES

(‘aaron', 'pwd')
IF

NOT EXISTS;

Falling Insert

INSERT INTO

user

(user name, password)
VALUES

(‘aaron', 'pwd')
IF

NOT EXISTS;

[applied] | user name | password

False | aaron | newpwd

Update It No Change

UPDATE

user
SET

password = 'newpwd’
WHERE

user name = "aaron
IF

password = 'pwd';

~alling Update

UPDATE

user
SET

password = 'newpwd’
WHERE

user name = ‘'aaron’
IF

password = ‘pwd’;

[applied] | password

Light VWeight [ransactions

Static Columns
naexes

Static Columns

Column value stored at the
partition level.
All rows in the partition have
the same value.

Static Columns

CREATE TABLE web order (

order 1d text,

order total 1nt static,
order 1item text,

1tem cost int,

PRIMARY KEY (order id, order item)
) ;

Static Columns - Simple Example

INSERT INTO

web order

(order 1d, order total, order item, item cost)
VALUES

(‘ordl', 5, 'foo', 5);
INSERT INTO

web order

(order 1d, order total, order item, item cost)
VALUES

(‘ordl', 10, 'bar', 5);
INSERT INTO

web order

(order 1d, order total, order item, item cost)
VALUES

(‘ordl', 20, 'baz', 10);

Static Columns - Simple Example

select * from web order;

order 1d | order 1item | order total | 1tem cost

ordl | bar | 20 | 5
ordl | baz | 20 | 10
ordl | foo | 20 | 5

Static Columns With LW'T
Static Columns may be used in

a conditional UPDATE.

All updates to the Partition in
the BATCH will be included.

Static Columns With LW'T

BEGIN BATCH

UPDATE web order

SET order total = 50
WHERE order 1id='ordl'
IF order total = 20;

INSERT INTO web order

(order 1d, order 1item, 1tem cost)
VALUES

(‘ordl’', 'monkey', 30);

APPLY BATCH;

Light VWeight [ransactions
Static Columns
Indexes

Secondary Indexes

Use non Primary Key fields in
the VWHERE clause.

Secondary Indexes
Use Sparingly.
Impacts Performance and
Availability.

Secondary Indexes

CREATE TABLE user (

user name text,
state text,
password text,

PRIMARY KEY (user name)
) ;

CREATE INDEX on user(state);

Secondary Indexes

INSERT INTO user

(user name, state, password)
VALUES

(‘aaron', 'ca', ‘pwd');

INSERT INTO user

(user name, state, password)
VALUES

(‘nate', 'tx', ‘pwd');

INSERT INTO user

(user name, state, password)
VALUES

('kareem', 'wa', 'pwd');

Secondary Indexes
SELECT * FROM user WHERE state = ‘ca’:

user name | password | state

| hanks.

Aaron Morton
@aaronmorton

Co-Founder & Team Member
www.thelastpickle.com

LAST PICKLE

Licensed under a Creative Commons Attribution-NonCommercial 3.0 New Zealand License

http://creativecommons.org/licenses/by-nc/3.0/nz/
http://www.thelastpickle.com
http://creativecommons.org/licenses/by-nc/3.0/nz/

