
Kindling

Getting Started With Spark & Cassandra

Erich Ess
CTO at SimpleRelevance

erich@simplerelevance.com

Data Source

•  I used the movielens data set for my examples:

•  Details about the data are at: http://
www.grouplens.org/datasets/movielens/

•  I used the 1M review dataset

•  A direct link to the1M dataset files:
http://files.grouplens.org/datasets/movielens/
ml-1m.zip

•  I also made up some of my own data

Code Examples

•  Here is a Gist with the Spark Shell code I
executed during the presentation:

•  https://gist.github.com/erichgess/
292dd29513e3393bf969

Overview

•  What is Spark

•  Spark Introduction

•  Spark + Cassandra

•  Demonstrations

Goal

•  Build out the basic foundations for using Spark
with Cassandra

•  Simple Introduction

•  Give a couple examples showing how to use
Spark with Cassandra

•  SparkSQL – Demonstrate one of the
frameworks that augments Spark’s power

What is Spark

•  Distributed Compute Platform

•  In Memory (FAST)

•  Batch and Stream Processing

•  Multi-language Support

•  Java, Python, and Scala out of the box

•  Shell – You can do interactive distributed
computing and analytics in Scala or Python

The Basics

•  Spark Context

•  The connection to the cluster

•  The Resilient Distributed Dataset

•  Abstracts the distributed data

•  The core of Spark

•  Functional First Approach

•  Less code, more obvious intentions

Spark Context

•  This is your connection to the Spark cluster

•  Create RDDs

•  When you open the Spark Shell, it
automatically creates a context to the cluster

•  When writing a standalone application to run on
Spark you create a SparkContext and configure
it to connect to the cluster

Spark Context (cont.)

•  Configuring the Spark cluster for your
application

•  If you are using a database then the
SparkContext is how you will set up the
connection

•  For Example, Cassandra:
•  val conf = new SparkConf(true).set("spark.cassandra.connection.host",

“localhost")

The Resilient Distributed Dataset

•  Use this to interact with data that has been
distributed across the cluster

•  The RDD is the starting point for doing parallel
computations on Spark

•  External Datasets

•  HDFS, S3, SQL, Cassandra, and so on

The Resilient Distributed Dataset

•  Functional Transformations

•  These transform the individual elements of the RDD
in one form or another

•  Map, Reduce, Filter, etc.
•  Lazy Evaluation: until you do something which

requires a result, nothing is evaluated

•  These will be familiar if you work with any functional
language (Haskell/F#/Clojure) or a language with
functional elements (e.g. Scala/C#/Java8)

The RDD (2)

•  Cache into Memory

•  Lets you put an RDD into memory

•  Dramatically speeds up processing on large
datasets

•  The RDD will not be put in memory until an action
forces the RDD to be computed (this is the lazy
evaluation again)

Transformations

•  Transformations are chainable

•  They take an RDD and return an RDD

•  The type the RDD wraps is irrelevant
•  Can be chained together

•  Map, filter, etc.
•  Simply Put: Transformations return another

RDD, Actions do not

Transformations

•  myData.filter(x => x %2 == 1)

•  myData.filter(x => x%2 == 1).map(y => 2*y)

•  myData.map(x=> x/4).groupBy(x=>x > 10)

Actions

•  Actions

•  These are functions which “unwrap” the RDD

•  They return a value of a non RDD type

•  Because of this they force the RDD and
transformation chain to be evaluated

•  Reduce, fold, count, first, etc.

Actions

•  myData.first

•  myData.filter(x => x > 10).reduce(_+_)

•  myData.take(5)
•  myData.top(3)

Fault Tolerance

•  For batch processing the chain of
transformations IS fault tolerance

•  Spark keeps a family tree for every RDD, from
which it can recreate the exact chain of
transformations and actions used to create the
RDD

•  If something fails, the Spark just replays the
source data through the transformation chain to
recreate the RDD

The Shell

•  Spark provides a Scala and a Python shell
•  Do interactive distributed computing

•  Let's you build complex programs while testing
them on the cluster

•  Connects to the full Spark cluster

Spark + Data

•  Out of the Box

•  Spark supports standard HDFS, S3, etc.
•  Other Data Sources

•  Third Party drivers allow connecting to other data
stores

•  SQL Databases

•  Cassandra

•  Data gets put into an RDD

Spark + Cassandra

•  DataStax provides an easy to use driver to
connect Spark to Cassandra

•  Configure everything with DataStax Enterprise
and the DataStax Analytics stack

•  Read and write data from Spark

•  Interact with Cassandra through the Spark
Shell

Spark + DSE

•  Each node has both a Spark worker and
Cassandra

•  Data Locality Awareness

•  The Spark workers are aware of the locality of data
and will pull the data on their local Cassandra
nodes

Pulling Some Data from Cassandra

•  Use the SparkContext to get to the data

•  sc.cassandraTable(keyspace,table)

•  This returns an RDD (which has not actually been
evaluated because it's lazy)

•  The RDD represents all the data in that table

•  The RDD is of Row type

•  The Row type is a type which can represent any
single row from a Cassandra table

Quick Sample

Pulling Data a Little Cleaner

•  The Row type is a little messy to deal with

•  Let's use a case class to load a table directly
into a type which represents what's in the table

Saving back into Cassandra

•  The RDD has a function called
saveToCassandra

•  MyData.saveToCassandra(keyspace,table)

Sample Code

•  case class Example(A: Int, B: Int)
•  val data = Seq(Example(1,1), Example(2,2))

•  val pdata = sc.parallelize(data)

•  pdata.saveToCassandra(“demo”,
“first_example”)

Beyond

•  Streams

•  Machine Learning

•  Graph Processing

