Kindling

Getting Started With Spark & Cassandra

Erich Ess
CTO at SimpleRelevance
erich@simplerelevance.com

Data Source

| used the movielens data set for my examples:
Details about the data are at: http.//
www.grouplens.org/datasets/movielens/

| used the 1M review dataset
A direct link to the 1M dataset files:

http://files.grouplens.orqg/datasets/movielens/
mil-1m.zip

| also made up some of my own data

Code Examples

Here is a Gist with the Spark Shell code |
executed during the presentation:

https.//gist.github.com/erichgess/
292dd29513e3393b7969

Overview

What is Spark
Spark Introduction
Spark + Cassandra

Demonstrations

Goal

Build out the basic foundations for using Spark
with Cassandra

Simple Introduction

Give a couple examples showing how to use
Spark with Cassandra

SparkSQL — Demonstrate one of the
frameworks that augments Spark’s power

What is Spark

Distributed Compute Platform
In Memory (FAST)
Batch and Stream Processing

Multi-language Support
Java, Python, and Scala out of the box

Shell — You can do interactive distributed
computing and analytics in Scala or Python

The Basics

Spark Context
The connection to the cluster

The Reslilient Distributed Dataset
Abstracts the distributed data
The core of Spark

Functional First Approach
[ess code, more obvious intentions

Spark Context

This is your connection to the Spark cluster
Create RDDs

When you open the Spark Shell, it
automatically creates a context to the cluster
When writing a standalone application to run on
Spark you create a SparkContext and configure
it to connect to the cluster

Spark Context (cont.)

Configuring the Spark cluster for your
application

If you are using a database then the
SparkContext is how you will set up the
connection

For Example, Cassandra:

val conf = new SparkConf(true).set("spark.cassandra.connection.host”,
“localhost")

The Resilient Distributed Dataset

Use this to interact with data that has been
distributed across the cluster

The RDD is the starting point for doing parallel
computations on Spark

External Datasets
HDFS, S3, SQL, Cassandra, and so on

The Resilient Distributed Dataset

Functional Transformations
These transform the individual elements of the RDD
in one form or another
Map, Reduce, Filter, etc.
Lazy Evaluation: until you do something which
requires a result, nothing is evaluated
These will be familiar if you work with any functional
language (Haskell/F#/Clojure) or a language with
functional elements (e.q. Scala/C#/Java8)

The RDD (2)

Cache into Memory
Lets you put an RDD into memory
Dramatically speeds up processing on large
datasets
The RDD will not be put in memory until an action
forces the RDD to be computed (this is the lazy
evaluation again)

Transformations

Transformations are chainable
They take an RDD and return an RDD
The type the RDD wraps is irrelevant
Can be chained together
Map, filter, etc.

Simply Put: Transformations return another
RDD, Actions do not

Transformations

myData.filter(x => x %2 == 1)
myData.filter(x => x%2 == 1).map(y => 27y)
myData.map(x=> x/4).groupBy(x=>x > 10)

Actions

Actions
These are functions which “unwrap” the RDD
They return a value of a non RDD type
Because of this they force the RDD and
transformation chain to be evaluated
Reduce, fold, count, first, eftc.

Actions

myData.first

myData.filter(x => x > 10).reduce(_+)
myData.take(5)

myData.top(3)

Fault Tolerance

For batch processing the chain of
transformations IS fault tolerance

Spark keeps a family tree for every RDD, from
which it can recreate the exact chain of
transformations and actions used to create the
RDD

If something fails, the Spark just replays the
source data through the transformation chain to
recreate the RDD

The Shell

Spark provides a Scala and a Python shell

Do interactive distributed computing

Let's you build complex programs while testing
them on the cluster

Connects to the full Spark cluster

Spark + Data

Out of the Box
Spark supports standard HDFS, S3, efc.

Other Data Sources
Third Party drivers allow connecting to other data

stores
SQL Databases
Cassandra

Data gets put into an RDD

Spark + Cassandra

DataStax provides an easy to use driver to
connect Spark to Cassandra

Configure everything with DataStax Enterprise
and the DataStax Analytics stack

Read and write data from Spark

Interact with Cassandra through the Spark
Shell

Spark + DSE

Each node has both a Spark worker and
Cassandra

Data Locality Awareness
The Spark workers are aware of the locality of data
and will pull the data on their local Cassandra
nodes

Pulling Some Data from Cassandra

Use the SparkContext to get to the data
sc.cassandralable(keyspace,table)
This returns an RDD (which has not actually been
evaluated because it's lazy)
The RDD represents all the data in that table

The RDD is of Row type

The Row type is a type which can represent any
single row from a Cassandra table

Quick Sample

Pulling Data a Little Cleaner

The Row type is a little messy to deal with
Let's use a case class to load a table directly
into a type which represents what's in the table

Saving back into Cassandra

The RDD has a function called
saveloCassandra
MyData.save ToCassandra(keyspace,table)

Sample Code

case class Example(A: Int, B: Int)

val data = Seq(Example(1,1), Example(2,2))
val pdata = sc.parallelize(data)

pdata.save ToCassandra("demo’,

‘first_ example”)

Beyond

Streams
Machine Learning
Graph Processing

