
Running Hailo on Cassandra

The kung-fu of “medium-sized data”

• Taxi-app connecting passengers to drivers

• Operating in locations around the world

• Available round-the-clock

• We want our app to be usable anywhere

• We may need to scale up operations at any time

What is Hailo?

Why Cassandra?

• Elegant architecture (truly masterless topology)

• Linearly scalable (want more power then just add more nodes)

• Flexible (add new DCs on-the-fly)

• Fault-tolerant

• Not necessarily because we have big-data - just big requirements

• Simple!

How C* helped us grow

• C* made it easy for us to replicate our data across multiple DCs

• Capacity could be added as we needed it without interrupting live traffic

• Zero downtime upgrades meant that we could perform operations

during business hours

• Fault-tolerance allowed us to sleep easily at night knowing that we

would be free from outages

• Defeated the end-of-level bosses of scaling and stability

The Stack
• Pure AWS

• DCs connected by OpenVPN

• C* nodes are either c3.2xlarge (premium) & m1.xlarge (economy)

• All storage is on striped-ephemeral disk (fast and cost-effective)

• In each DC we use 3 availability-zones

• Each cluster is scaled in multiples of 3

• Data is stored using RF=3 (one copy in each AZ with NTS)

• Most queries are local-quorum, often reads are relaxed to ONE

• Microservices in GO (performant self-contained binaries)

• NSQ & Rabbit as message buses

• Ubuntu Server

Things we had to develop

• Automated deployment of clusters

• Monitoring with Grafana & Zabbix

• Backup and restore

• CTOP (real-time performance monitoring for C* nodes)

• GoCassa (library to simplify development and data-modeling)

Automation

• Nodes born in static autoscaling groups from JSON templates

• Storage automatically striped / encrypted / mounted

• Joined to puppet using cloud-init (thanks Ubuntu)

• Clustered using custom AWS/Puppet plugins to locate seeds

• Options to automatically create schemas and load test-data

• Scripts to “migrate” data incrementally from one cluster to another

Backup & restore with S3

• Built on the legendary “s3cmd”

• Only transfers new SSTables (and --delete those that no longer exist)

• Disable the md5-check (sstables are immutable… name & time is fine)

• Encryption handled by AWS API using “SSE-C”

• Remember which files you had on each day for “point-in-time” restores

• One day you will say “thanks” to your past-self for doing this

GoCassa is a wrapper library for GoCQL, designed to make it easy for
developers to use pre-defined recipes for things that Cassandra can do
well, in a consistent manner.

• Recipes for various forms of indexes possible in C*

• Avoid anti-patterns

• Try it out - https://github.com/hailocab/gocassa

GoCassa

Advice for first-time users

• Automate all the things from day one

• Understand how your queries affect your C* clusters

• Practise restoring data REGULARLY

• Don’t overload your nodes with data (or queries)

• Invest time in designing data-models and query-patterns

• Advocate Cassandra and lead by example

• Continue to develop our tools to allow swarms of micro-services to

share Cassandra clusters

• Continue the development of the GoCassa library to make it easy to

get the best out of Cassandra

• Keep investigating new ways to model data for Cassandra

• Keep enjoying the performance and stability!

Thanks
for listening!

chris.hoolihan@hailocab.com

➔ http://jobs.hailocab.com/

➔ https://github.com/hailocab/ctop

➔ https://github.com/hailocab/gocassa

https://github.com/hailocab/ctop
https://github.com/hailocab/ctop
https://github.com/hailocab/gocassa
https://github.com/hailocab/gocassa

