HAIL

Running Hailo on Cassandra

The kung-fu of “medium-sized data”

HAIL

e Hailo ()

Taxi-app connecting passengers to drivers
Operating in locations around the world
Available round-the-clock

We want our app to be usable anywhere

We may need to scale up operations at any time O -

Pick Me Up Here [

o OO =

HAIL

Elegant architecture (truly masterless topology)

Linearly scalable (want more power then just add more nodes)
Flexible (add new DCs on-the-fly)

Fault-tolerant

Not necessarily because we have big-data - just big requirements

Simple!

HAIL

C* made it easy for us to replicate our data across multiple DCs
Capacity could be added as we needed it without interrupting live traffic
Zero downtime upgrades meant that we could perform operations
during business hours

Fault-tolerance allowed us to sleep easily at night knowing that we
would be free from outages

Defeated the end-of-level bosses of scaling and stability

008

LL)

008

888

888

888

HAIL

The Stack

DCs connected by OpenVPN
C* nodes are either c3.2xlarge (premium) & m1.xlarge (economy)
All storage is on striped-ephemeral disk (fast and cost-effective)
In each DC we use 3 availability-zones
Each cluster is scaled in multiples of 3

Data is stored using RF=3 (one copy in each AZ with NTS)

Most queries are local-quorum, often reads are relaxed to ONE
Microservices in GO (performant self-contained binaries)

NSQ & Rabbit as message buses

Ubuntu Server

HAIL

Automated deployment of clusters

Monitoring with Grafana & Zabbix

Backup and restore

CTOP (real-time performance monitoring for C* nodes)

GoCassa (library to simplify development and data-modeling)

Automation

Nodes born in static autoscaling groups from JSON templates
Storage automatically striped / encrypted / mounted

Joined to puppet using cloud-init (thanks Ubuntu)

Clustered using custom AWS/Puppet plugins to locate seeds

Options to automatically create schemas and load test-data

Scripts to “migrate” data incrementally from one cluster to another

19 Cassandra-Premium (EU)

Read Latency (u95)
6.0ms

5.0ms

09:30 10:00 1030 11:00 1130 12:00 1230
Max Avg: 3.445ms = Avg Avg: 2.455ms — Min Avg: 1.638 ms

Write Latency (u95)
20ms
15ms
1.0ms
500 ps
Ops

09:30 10:00 10:30 11:00 11:30 12:00 12:30
Max Avg: 1.546 ms = Avg Avg: 1.250ms ~ Min Avg: 1.038 ms
Client connections

ZoomOut 6 hours ago to a few seconds ago refreshed every 30s v 5 @& #

Data Volume
37GiB
28GiB
19GiB
9GiB
0B
13:00 13:30 14:00 14:30 15:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00

Max Current: 33.5GIB = Avg Current: 2.9 GIB — Min Current: 25.5 GiB

JVM (Heap Usage)

"“I
\=I!4‘l A“r"l\'

13:00 13:30 14:00 14:30 15:00 09:30 10:00 10:30 L 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00

=ip-10-11-12210 = ip-10-11-12-59 = ip-10-11-13-37 - ip-10-11-20-209 ~ ip-10-11-20-87 ~ ip-10-11-21-235 ~ ip-10-11-4-235 — ip-10-11-5-189 ~ ip-10-11-5-224

Load Average

08:30 10:00 10:30 11:00 11:30 12:00 12:30

Max Avg: 254 = Avg Avg: 226 — Min Avg: 204

Read rate
13K

10K

750

250

o

09:30 10:00 10:30 11:00 11:30 12:00 12:30

EU-WEST-1 Avg: 757

13:00 13:30 14:00 14:30 15:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00

Max Avg: 0.87 = Avg Avg:0.48 ~ Min Avg: 0.22

13:00 13:30 14:00 14:30 15:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00
~ EU-WEST-1 Avg: 440

HAIL

Built on the legendary “s3cmd”

Only transfers new SSTables (and --delete those that no longer exist)
Disable the md5-check (sstables are immutable... name & time is fine)
Encryption handled by AWS API using “SSE-C”

Remember which files you had on each day for “point-in-time” restores

One day you will say “thanks” to your past-self for doing this

+ C-top (top for Cassandra)
| ColumnFamily

KeySpace

Keyspacel
system

system

system
Keyspacel
system

system
system_traces
Keyspacel
Keyspacel
system

system

system
system_traces
Keyspacel
system

system

system

system

system

system

system

Standardl

sstable_activity

paxos
schema_columns
Counterl

compactions_in_pro

hints
sessions
Counter3

Superl

compaction_history
schema_triggers

IndexInfo
events
SuperCounterl

range_xfers
local

peers

schema_keyspaces

NodeIdInfo
batchlog

schema_columnfamil
+ Organise by (1)Reads/s / (2)Writes/s / (3)Space-used / (4)Read-latency / (S)Write-latency, (M)etrics,

-- Metrics +
| Reads/s | Writes/s | LiveSpace(B) | R-Latency(ms) | W-Latency(ms) |
1387.600 ©0.000000 593599978 23.453308 0.015720 |
0.000000 ©.000000 © 0.169000 0.012750 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 ©.000000 26184 0. 000000 0.000000 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 0.000000 @ 0. 000000 0.191000 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 0.000000 @ 0. 000000 0. 000000 |
0.000000 0.000000 @ 0. 000000 0.078500 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 ©.000000 © 0.000000 0.000000 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 ©.000000 © 0.000000 0.000000 |
0.000000 ©0.000000 11650 0. 000000 0.000000 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 0.000000 14591 0.000000 0.000000 |
0.000000 0.000000 @ 0.000000 0. 000000 |
0.000000 0.000000 @ 0.000000 0.000000 |
0.000000 0.000000 22315 0.000000 0.000000 |

HAIL

GoCassa is a wrapper library for GoCQL, designed to make it easy for
developers to use pre-defined recipes for things that Cassandra can do
well, in a consistent manner.

e Recipes for various forms of indexes possible in C*
¢ Avoid anti-patterns

e Try it out - https://github.com/hailocab/gocassa

HAIL

Advice for first-time users

Automate all the things from day one
Understand how your queries affect your C* clusters
Practise restoring data REGULARLY

Don’t overload your nodes with data (or queries)

Invest time in designing data-models and query-patterns

Advocate Cassandra and lead by example

HAIL

Continue to develop our tools to allow swarms of micro-services to
share Cassandra clusters

Continue the development of the GoCassa library to make it easy to
get the best out of Cassandra

Keep investigating new ways to model data for Cassandra

Keep enjoying the performance and stability!

HAIL

- http://jobs.hailocab.com/

-> https://qithub.com/hailocab/ctop

- https://qgithub.com/hailocab/gocassa

&

https://github.com/hailocab/ctop
https://github.com/hailocab/ctop
https://github.com/hailocab/gocassa
https://github.com/hailocab/gocassa

