
Securing Cassandra
Not as hard as it sounds

instaclustr.com
@Instaclustr

http://instaclustr.com

Who am I and what do I do?
• Ben Bromhead

• Co-founder and CTO of Instaclustr -> www.instaclustr.com

<sales>

• Instaclustr provides Cassandra-as-a-Service in the cloud.

• Currently in AWS, Azure and IBM Softlayer with more to come.

• We currently manage 150+ nodes for various customers, who do various things with
it.

</sales>

http://www.instaclustr.com

What this talk will cover

• Why do we care about security?

• A meandering tour of Cassandra security controls

• Tips and tricks

Why do we care about security?

Why do we care about security

• Hackers

• Compliance…

• We now have a information security officer / architect

• Some sort of misguided sense of obligation to protecting end user
information?

But I run C* behind a firewall…

• Stops dumb mistakes (running dev scripts on prod)

• Stops malicious internal actors

• Multi data-centre clusters (GL with that VPN…)

• Run in the cloud?

So what do I need to care about?

Confidentiality Integrity

Availability

Access Control

Access Control

• Authentication: org.apache.cassandra.auth.IAuthenticator

• AllowAllAuthenticator - no auth, default

• ISaslAuthenticator - extends Authenticator

• PasswordAuthentication - username and password auth,
standard db stuff, uses ISaslAuthenticator

Authentication - General flow
• ServerConnection maintains QueryState, three states:

• UNINITIALIZED

• AUTHENTICATION

• READY

• Driver sends a STARTUP message, then CREDENTIALS/AUTH_RESPONSE.

• CredentialsMessage class calls the defined Authenticators authenticate method and then sets the state
to ready.

• You are then ready to start executing queries and authenticate does not get called again for the life of
the connection. The authenticated user gets stored in the ClientState.

• If your app uses short lived connections, uses a driver that does not pool them (e.g. php), this will hurt.

Authentication -
PasswordAuthentication

• CredentialsMessage calls authenticate which is implemented by
PasswordAuthentication:

• Checks whether you have actually provided a username / password combo

• Queries Cassandra with: SELECT salted_hash FROM system_auth.credentials
WHERE username = ?

• Queries using LOCAL_ONE for all users, except the user “cassandra” which
occurs at QUORUM

• default system_auth keyspace replication is set to 1… this should be set to
all nodes

Access Control
• Authorisation:

org.apache.cassandra.auth.IAuth
orizer

• AllowAllAuthorizer - no
permissions, default

• CassandraAuthorizer - extends
IAuthorizer, must be used with
PasswordAuthenticator

Authorisation - General flow
• CredentialsMessage calls state.getClientState().login(user). Which

checks again if the user exists.

• ClientState provides an authorize method to get permissions for the
logged in user against a specific resource.

• Alter, CreateIndex, DropIndex, Insert/Update, Select and Truncate
all call hasColumnFamilyAccess (or hasKeyspaceAccess) on the
client state to check if an operation is permitted.

• If it isn’t an UnauthorizedException is raised

Authentication - CassandraAuthorizer
• CassandraAuthorizer gets called to return a set of permissions by

Auth.

• Auth wraps these calls in a permissions Cache, otherwise the
authorizer gets called for every single operation.

• CassandraAuthorizer gets passed a user and a resource (keyspace
or cf) and returns the permissions it can find for that user, resource
pair.

• ALL KEYSPACES is treated as the root data resource.

CassandraAuthorizer +
PasswordAuthenticator

• Run these together

• Currently the user lookups and the permissions checks are in the read/write path
(even with the permissions cache).

• Be vigilant with your system_auth replication and keeping it repaired.

• Poorly configured/maintained system_auth keyspace can and will create 0%
availability in your other keyspaces… irrespective of their replication factor

• Don’t use the cassandra user

Auth changes in 2.2

• API has changed to support the concept of roles

• This includes inheritance!

• Roles are first class resources (like keyspaces and tables), so you
can grant permissions on certain roles.

• AuthZ in Cassandra has finally grown up!

Internode Authentication

• Yes it does exist!

• Currently the only provided internode authenticator is AllowAll

• Can be extended to authenticate based on remoteAddress and
port.

• No ability atm to use a shared secret or not, at best would support a
whitelist

Confidentiality

• Internode encryption

• Client <> Node encryption

• Whole disk encryption

ENCRYPTION!!1!

Internode Encryption
• Leverages SSLServerSockets from Netty (native)

• Server certificate stored in KeyStore, trust certificates stored in
TrustStore

• If requires_client_auth == true, the client must provide a certificate
the SSL context can build a chain of trust back to a cert in the
TrustStore.

• This can either be the provided certificate itself, or the CA that
signed that cert.

Configuring encryption

server_encryption_options:	

	
 	
 	
 	
 internode_encryption:	
 none	
 #	
 all,	
 none,	
 dc,	
 rack	

	
 	
 	
 	
 keystore:	
 conf/.keystore	

	
 	
 	
 	
 keystore_password:	
 cassandra	

	
 	
 	
 	
 truststore:	
 conf/.truststore	

	
 	
 	
 	
 truststore_password:	
 cassandra

Configuring encryption

server_encryption_options:	

	
 	
 	
 	
 internode_encryption:	
 none	
 #	
 all,	
 none,	
 dc,	
 rack	

	
 	
 	
 	
 keystore:	
 conf/.keystore	

	
 	
 	
 	
 keystore_password:	
 cassandra	

	
 	
 	
 	
 truststore:	
 conf/.truststore	

	
 	
 	
 	
 truststore_password:	
 cassandra

Configuring encryption

server_encryption_options:	

…	

	
 	
 	
 	
 protocol:	
 TLS	
 #	
 TLSv1.2,	
 SSLv3.0	
 etc	

	
 	
 	
 	
 algorithm:	
 SunX509	
 #	
 PKIK	

	
 	
 	
 	
 store_type:	
 JKS	
 #	
 support	
 for	
 different	

keystrokes	

	
 	
 	
 	
 cipher_suites:	
 [TLS_RSA_WITH_AES_128_CBC_SHA,…]	

	
 	
 	
 	
 require_client_auth:	
 true

Configuring encryption

• Strongly recommend you download the full strength JCE otherwise
Cassandra will not start with the default cipher suites

• Distribute the CA public cert in the truststore rather than individual
public certificates.

• troubleshooting certificate issues? use the openssl client

Client Encryption

• Pretty much the same as internode encryption under the hood.

• Supports require_client_auth as well

• Must be able to build a chain of trust to a valid certificate within the
truststore

• Does not actually set the AuthenticatedUser based on certificate
CN or anything like that

Configuring client drivers for
encryption

• Your driver will want the its certificates in either PEM, DER or as a
Keystore. Learn to love the openssl cli

• Cqlsh in some recent versions of Cassandra struggles with
requires_client_auth.

• Just use stunnel and plaintext cqlsh

At rest encryption

• Whole disk/volume

• dmcrypt/LUKS

• DSE Transparent Data Encryption (TDE)

• SSTable encryption

• In app encryption

At rest encryption

• dmcrypt/LUKS - up to a few % difference in throughput, minimal
cpu load if using cpus with AES-NI instruction set

• DSE SSTable encryption, we haven’t done any benchmarking but
according to DS there is a slight hit on perf.

• In app -> Variable… makes slice queries really hard

At rest encryption

• dmcrypt/LUKS -> Up to 8 keys per block device, Requires key
management at boot or via crypttab

• DSE TDE, now supports external KMIP servers for external key
management.

• In app -> Key management -> roll your own

At rest encryption
• Should I do it?

• PCI? Yup probably

• Otherwise… the threats it protects against are fairly low risk

• Vulnerable to cold memory attacks (litterally cool ram modules, to
persist state).

• Decryption key kept in memory

• You need to trust your DC/Cloud provider

Availability

• This should be pretty simple right? RF = 1,000,000

• There are a few things to keep in mind that an unauthenticated
attacker / unprivileged user can do to make things interesting.

Availability

• native_transport_max_threads …

Availability

• native_transport_max_threads is by default set to 128

• unauthenticated messages will take up one of these threads

• use client-auth as the SSL handler will drop the connection before
the message is dropped into the worker pool

Availability

Availability
• System_auth keyspace replication

• Every new session queries this keyspace

• Every new request queries either system_auth or the permissions
cache

• Increase the credential cache time

• Increase your system_auth rf

Availability

• Resource Scheduler

• Default - none

• RoundRobin

• implements a throttle limit - number of requests in flight

• Weight by keyspace

Go forth and conquer!

Questions?

