
Evolution of
Cassandra at Signal
Matthew Kemp

Matching Service
 Unified Customer View
 Measurement and Activation

Metrics
 Using KairosDB and Cyanite

Audit Log
 Event persistence

Our Cassandra Use Cases

Our First Use Cases

Cassandra Timeline: 2011

Evaluated
Cassandra 0.8,
Couch, Mongo
and Riak

Summer 2011 Fall 2011 Winter 2011

Decided on
Cassandra
(1.0 just released)

Initial AWS
deployment in
two regions
(8 total nodes)

Spring 2011

create column family signal_data
 with comparator = 'UTF8Type'
 and default_validation_class = 'UTF8Type'
 and key_validation_class = 'UTF8Type'
 and read_repair_chance = 0.0
 and gc_grace = 864000;

Our Very First Schema

Example Data Rows
Row Key Columns ...

a111 wwww xxxx yyyy

w111 x111 y111

b222 xxxx zzzz

x222 z222

c333 wwww yyyy zzzz

w333 y333 z333

Attempted to use
SuperColumns
and started using
Priam

Attempted to use
Composite
Columns and
switched to
m2.xlarges

Upgraded to
Cassandra 1.1
and start of
production usage

Added index
column family

Cassandra Timeline: 2012

Summer 2012 Fall 2012 Winter 2012Spring 2012

Priam

Because nobody wants to deal with this

Pre-CQL Data Types
Row Key Columns ...

a111 wwww:id wwww:attr_1 wwww:attr_2 xxxx:id

w111 value1 value2 x111

b222 xxxx:id

x222

c333 wwww:id wwww:attr_2

w333 something

Example Index Rows
Row Key Columns continued ...

wwww:w111 sid xxxx:x222 sid

a111 b222

xxxx:x111 sid zzzz:z222 sid

a111 b222

yyyy:y111 sid wwww:w333 sid

a111 c333

Upgraded to
Cassandra 1.2.9
and schema
redesign

Performance
testing, evaluating
1.2.x, switched to
Agathon

Upgraded to
Virtual Nodes and
started using
OpsCenter

Cassandra Timeline: 2013

Summer 2013 Fall 2013 Winter 2013Spring 2013

CREATE KEYSPACE signal WITH replication = {
 'class': 'NetworkTopologyStrategy',
 'eu-west': '2',
 'ap-northeast': '2',
 'us-west': '2',
 'us-east': '2'
};

Keyspace

CREATE TABLE signal_data (
 sid uuid,
 identifier varchar,
 ids map<varchar, varchar>,
 data map<varchar, varchar>,
 internal map<varchar, varchar>
 PRIMARY KEY (sid, identifier)
);

Data Table

Example Data Rows

sid identifier ids data internal

a111 wwww {'id':'w111'} {'attr_1':'value1'} {}

a111 xxxx {'xid':'x111'} {'attr_2':'value-a'} {}

a111 yyyy {'id':'y111'} {} {}

b222 xxxx {'xid':'x222'} {'attr_2':'value-b'} {}

b222 zzzz {'zid':'z222'} {} {}

CREATE TABLE signal_index (
 identifier varchar,
 partition int,
 id_name varchar,
 id_value varchar,
 sid uuid
 PRIMARY KEY (
 (identifier, partition), id_name, id_value)
);

Index Table

Example Index Rows

identifier partition id_name id_value sid

wwww 128 id w111 a111

xxxx 84 xid x111 a111

yyyy 71 id y111 a111

xxxx 193 xid x222 b222

zzzz 3 zid z222 b222

partition = abs(hash(id_name + id_value)) % partitions

Migration To Virtual Nodes

Old Ring
(read only)

Data
Access
Service

"Migration"
Script

New Ring
(read & write)

Upgraded to i2.
xlarges and
Cassandra 1.2.16

Scaling clusterSchema
improvements
and KariosDB
backed by
Cassandra

Cassandra Timeline: 2014

Summer 2014 Fall 2014 Winter 2014Spring 2014

AWS Instance Types

Instance Type ECUs Virtual CPUs Memory Disks

m2.xlarge 6.5 2 17.1 1x420GB

m2.2xlarge 13 4 34.2 4x420GB

i2.xlarge 14 4 30.5 1x800GB SSD

SSD Performance: Writes
Upgrade to SSDs Upgrade to 1.2.16

SSD Performance: Reads

Upgrade to SSDs Upgrade to 1.2.16

Added a new
AWS region and
rolled out new
audit log use
case
(separate ring)

???Planned schema
redesign and
focus on
performance
(latency)

Cassandra Timeline: 2015

Summer 2015 Fall 2015 Winter 2015Spring 2015

Metrics and
reporting
(Spark?)

Adding a New Region

West

EastEurope

Tokyo

Sydney

Reduce Latency: Writes

Reduce Latency: Reads

Currently run as a set of ad hoc python scripts

Considering adding reporting tables
 Centered around set membership and overlap

Considering using Spark as job runner

Metrics and Reporting

140+ Nodes (i2.xlarge)

15B+ rows in data table

45B+ rows in index table

30+ TB of data

Some Ring Stats

We've survived …

Amazon swallowing nodes

Amazon rebooting the internet

Disk Failures

Corrupt SSTables

Intra and inter region network issues

Dealing With Failure

Use SSDs, don't skimp on hardware

Stay current, but not too current

Keep up on repairs

Test various configurations for your use case

Simulating production load is important

Advice

"The best way to approach data modeling for
Cassandra is to start with your queries and work
backwards from there. Think about the actions
your application needs to perform, how you want
to access the data, and then design column
families to support those access patterns."

The Best Advice

Questions?

Contact Info
mkemp@signal.co

@mattkemp

/in/matthewkemp

