3...
DATARASTAHX.??

Top 5 Tips & Tricks with Cassandra / DSE

Cliff Gilmore
Solution Engineer @ DataStax

Cassandra Days brought to you by DataStax

Data Modeling

DATASTAX

Compaction

POC Mistakes

Hardware Selection

A A~ WON =

Two Common Anti-Patterns

Avoid Secondary Indexes For
Most Cases DATASTAXS

Wrong Way

Assume a user table and the following queries

create table users (create index users_first on users (first_name);
userid uuid, create index users_last on users (last_name);

first_name text, create index users_date on users (created_date);
last_name text, - -

email text,
created_date timestamp,
PRIMARY KEY (userid)

) Why Not?

Get user details for a given userid

—

)
2) Get all the users with the f.lrst name of .John . High Cardinality
3) Get user details for user given an email _ _
4) Get all the users created on June 3@ 2014 - Many Nodes Required to Deliver Result
Tombstones

Heavy Resource Usage
Slow Performance!!!

Avoid Secondary Indexes For Most Queries DATASTAX:
Better Way

All the users with the first name of John User details for user with the email All the users for a create day
‘john.doe@datastax.com’
create table users_by_fname (create table users_by_day (
userid uuid, create table users_by email (userid uuid,
first_name text, userid uuid, first_name text,
Iast_name text, first_name text, last_name text,
em;l text, last_name text, email text,
created_time timestamp, email text, created_time timestamp,
PRIMARY KEY (first_name,userid) created_time timestamp, created_day text, //lyyyynndd date
); PRIMARY KEY (email) PRIMARY KEY (
); created_day, created_time, userid)

Also can sort by create time within the day in
query!

Data Modeling

DATASTAX

Compaction

POC Mistakes

Hardware Selection

A A~ WON =

Two Common Anti-Patterns

Compaction Choices DATASTAX:

Why Does It Matter?

Write performance
Read Performance
Sizing impact — different free space requirements

What Are my Options?

Size Tiered
Leveled
Date Tiered

Compaction Choices DATASTAX®

Size-Tiered
When to Use?
Slow Storage (spinning disk)

Insert Heavy Workload = = Empg
Few Updates i I : I QII

Negatives -IIIII
- Requires Lots of Free Space Ill‘“

= -y =-gm E>I

Can read many sstables to satisfy a query

Compaction Choices DATASTAX:

Leveled
When to Use? o - - -
i i [[1]]] i

Read Latency Sensitive Queries m

SSD hardware = e wnm ” wm ” wm

Less Free Space m 1] e
Negatives 5

Uses significantly more 10 to compact N

No performance gain on partitions written
to once and never updated

Compaction Choices DATASTAX:

Date-Tiered

WhentoUse? e
- Time Series Tables -’————%—{-—-

— Higher node density

ssssssssssssssssss

Few if any updates

Predictable deletes (Default TTL) 2 _’7___ __+ IR
Negatives * ‘ V * |
- Not good if frequent updates/deletes ° 4’7 ‘ —*-yzrﬁ——

Only appropriate for time ordered data

Data Modeling

DATASTAX

Compaction

POC Mistakes

Hardware Selection

A A~ WON =

Two Common Anti-Patterns

Common Proof of Concept Mistakes DATASTAX:

- Performance testing on different hardware
— VMs on SAN will not reflect production performance

- Not using queries that represent the final product
— Use Cassandra 2.1’s cassandra-stress to test against actual tables
— Understand the queries against the system

- Using empty nodes for performance testing
— OS Buffer cache masks |10 system

Data Modeling

DATASTAX

Compaction

POC Mistakes

Hardware Selection

A A~ WON =

Two Common Anti-Patterns

Hardware

DATASTAX

- More Moderate Sized Nodes > Few Larger Nodes

— Cassandra is JVM based, Heap limitations

— Scale out not up
— Scaling really is linear

CPU
— 4-16 Cores

RAM
— 32+GB
— OS Buffer Cache via mmap

9

1200000

1000000

800000

600000

400000

200000

0

Scale-Up Linearity

Client Writes/s by node count — Replication Factor = 3

/ -

537172
7366828
174373

0 50 100 150 200 250 300 350

Hardware

- Local Storage
— SAN -> SPOF, Latency Spikes, Throughput Issues

- Why SSD?

Read Latency
Compaction
Repair
Performance

12ms 7200RPM
7ms 10k

5ms 15k

.04 ms SSD

DATASTAX

Data Modeling

DATASTAX

Compaction

POC Mistakes

Hardware Selection

A A~ WON =

Two Common Anti-Patterns

Loading Data via Batch DATASTAX?

- Cassandra Provides Logged and Unlogged Batch Statements

— Logged protects against partial completion
Often used to keep multiple tables with same data points in sync

— Unlogged is just a grouping of statements

Don’t do this!

BEGIN UNLOGGED BATCH;
insert into users (userid,first_name,...) values(1,”John”,...);
insert into users (userid,first_name,...) values(2,”Jeff”,...);
insert into users (userid,first_name,...) values(3,”Joe”,...);
insert into users (userid,first_name,...) values(4,”Jason’,...);
APPLY BATCH

Loading Data via Batch

- Why Not?
— Puts extra work load on the coordinator
— Adds a network hop by nullifying token awareness
— JVM Pressure on Coordinator
- What Should you Do?
— Asynchronous inserts via Prepared Statements
— Faster execution wait
— Better usage of built in load balancing

DATASTAX

Cassandra Queues with Improper Data Model

- What is the anti-pattern?

— Cassandra has to scan across
tombstones in a partition to read from
that partition

— gc_grace_period poses a dilema

Example
create table queue (
element_name text,
queue_time timeuuid,
payload blob,
PRIMARY KEY (element_name,queue_time)

If we queue 1000 payloads for a given
element_name and delete the payloads as they are
dequeued there will be 1000 tombstones in this
partition that need to be scanned across.

- Workarounds

— Multiple Tables with some time
element and truncate the tables
when empty

— Have each worker create it's own
table for a workload and truncate
the table when the work is
complete

— Both of these methods have pros
and cons, so be careful and
understand your workload!

DATASTAX

— =

5
m\ \,k/h\\ ooy
\ \“}\H\THSTHX: , //,,
y |
\‘ "h
~

Questions?
\ y

¥ o
. DATASTAX?

Thank You

cgilmore@datastax.com

