
Raghavendra Prabhu (RVP)

Zen: A Graph Data Model on
HBase

Xun Liu

HBase @ Pinterest - 2012

•Original use case: materialized home feed

•Replaced Redis

•Need: elasticity, high write load, serve from disk/SSD

•Challenges:

•Running on public cloud (AWS)

•User facing use case (MTTR, latency, fault tolerance etc.)

HBase @ Pinterest - 2013

•Need: highly elastic key-value store

•Access from Python

•Support “move fast”

•Low operational overhead

Enter UMegaStore

Storage-as-a-Service: Key-value thrift API on top of HBase

Features:

•Key partitioning to balance load

•Master-slave clusters, semi automatic failover

•Speculative execution

•Multi-tenancy with traffic isolation

Storage-as-a-service was a great step forward,
but could we do better?

“Given how robust the messenger is on
day one, it’s surprising to learn that
Pinterest built the entire product  
in three months.” — The Verge

Example: Messages Data Model

Conversation

Message 1

Message 2

Message N

User

User

Participates Contains

Realization

•These object models closely resemble a graph

•Objects are nodes, edges represent relationships

•Typical needs:

• retrieve data for a node or edge

• get all outgoing edges from a node

• get all incoming edges from a node

• count incoming or outgoing edges for a node

Enter Zen

•Provides a graph data model instead of key-value

•Automatically creates necessary indexes

•Materializes counts for efficient querying

•Implemented on top of HBase

Zen API

Nodes:

• addNode, removeNode, getNode

• Node id: globally unique 64-bit integer 

ID 123

Prop 1 Val 1

Prop 2 Val 2

Zen API

Edges:

• addEdge, removeEdge, getEdge

• Edge Ref: (edgeType, fromId, toId)

• Score for ordering

Edge Ref 120, 123, 4567

Prop 1 Val 1

Prop 2 Val 2

Zen API

Edge Queries:

• getEdges, countEdges, removeEdges

struct EdgeQuery {

 1: required NodeId nodeId;

 2: required EdgeDirection direction;

 3: optional TypeId edgeType;

}

Zen API

Property Indexes

•Unique index

•Ensures a property value is unique across all nodes of a type

•Non-unique index

•Allows retrieval by property value

•Works for both nodes and edges

Illustration: Messages on Zen

Id:1234 Id:2345 Id:3456

Type: Participates Type: Contains

Type: Conversation
Started: 12 Aug 2014 08:00
Header: “Great pin!”
Pin Id: 10001 [non-unique]

Type: User
Name: “Ben Smith” [unique]
Status: Active

Type: Message
Sent: 12 Aug 2014 08:00
Text: “Great pin!”

Zen @ Pinterest - 2014
Close to 10 million operations every second

Smart Feed Messages News Interests

Zen Schema Design

Zen - Property

Data

type name score distance

12345 (node) 10 Ben Smith

12345-20-67890 (edge) 1000 1 mile

Zen - Property Index

Data

ID

unique-10-name=ben smith 12345

nonuniq-10-lastname=smith-12345

nonuniq-10-lastname=smith-67890

Zen - Edge Score Index

Data

12345-out-20-1000-67890

12345-out-20-1001-67891

12345-in-30-990-67892

12345-in-30-991-67893

Zen - Edge Count

Data

Count

12345-out-20 2

12345-in-30 4

Production Learnings

1. Avoid Hot Regions

•Salt row keys to achieve uniform distribution

•Reverse bits of auto increment integers

•Prepend hash to row keys

•Pre-split regions using uniform split

•Tall table

2. Batch For Throughput

•Bottleneck: HLog sync

•Deferred HLog sync can lose data

•Batching:

•Client-side: batch APIs for clients to do bulk insertion

•Server-side: Zen Server to buffer edits across clients and
flush together

3. Tune For Performance

•Memory v.s. Latency

•Default: BLOOMFILTER => ‘ROW’, BLOCKSIZE => '8192'

•Special: BLOOMFILTER => ‘NONE’, BLOCKSIZE => ‘32768'

•CPU v.s. Data Size

•Default: DATA_BLOCK_ENCODING => ‘FAST_DIFF’, COMPRESSION => ‘SNAPPY'

•Special: DATA_BLOCK_ENCODING => ‘PREFIX’, COMPRESSION => ‘NONE’

4. Namespace for Isolation

Node

Namespace 1

Edge Index Node

Namespace 2

Edge Index

•Dedicated HBase cluster for big applications

•Shared cluster with dedicated namespace for smaller ones

5. Coprocessor For Efficiency

•Use Case: remove a large number of edges (feeds)

•Usual Way:

•Scan all edges of a node

•Delete edges beyond a limit

•Major compact to remove delete markers

•Coprocessor

•Trim in a major compaction coprocessor

6. Best Effort Data Consistency

• No distributed transaction: keep things simple and fast

• Best effort to maintain data consistency:

• Manual rollback in Zen server upon failures

• Offline MapReduce jobs (Dr Zen) to scan and fix inconsistencies

Takeaways

•The graph data model can be a convenient abstraction to
cut down product development time.
•HBase has worked very well as a storage backend for Zen
for large scale user facing workloads.

