

HBase @ Pinterest - 2012

Original use case: materialized home feed
Replaced Redis
Need: elasticity, high write load, serve from disk/SSD

Challenges:

Running on public cloud (AWS)
User facing use case (MTTR, latency, fault tolerance etc.)

HBase @ Pinterest - 2013

Need: highly elastic key-value store

Access from Python
Support “move fast”
Low operational overhead

Enter UMegaStore

Storage-as-a-Service: Key-value thrift APl on top of HBase
Features:

Key partitioning to balance load

Master-slave clusters, semi automatic failover
Speculative execution

Multi-tenancy with traffic isolation

‘Given how robust the messenger is on
day one, it’s surprising to learn that
Pinterest built the entire product

N three months.” — The Verge

Example: Messages Data Model

Participates Contains

Conversation

User |

User

>

>

Message 2

Message N

<
@
0
%
QO
Q
@
—h

Realization

These object models closely resemble a graph
Objects are nodes, edges represent relationships
Typical needs:

retrieve data for a node or edge
get all outgoing edges from a node
get all inhcoming edges from a node

count incoming or outgoing edges for a node

Enter Zen

Provides a graph data model instead of key-value
Automatically creates necessary indexes
Materializes counts for efficient querying
Implemented on top of HBase

Zen API

Nodes:

addNode, removeNode, getNode

Node id: globally unigue 64-bit integer

Zen API

Edges:
addEdge, removeEdge, getEdge
Edge Ref: (edgelype, fromld, told)

Score for ordering

120, 123, 4567

Val 1

Val 2

Zen API

Edge Queries:

D
getEdges, countEdges, removekdges
)
struct EdgeQuery { :
1l: required NodelId nodeld; »O

2: requlired EdgeDirection direction;

3: optional Typeld edgeType;

Zen API

Property Indexes

Unique index

Ensures a property value is uniqgue across all nodes of a type

Non-unique index

Allows retrieval by property value

Works for both nodes and edges

lllustration: Messages on Zen

lype: Participates Type: Contains
> >
Type: User Type: Conversation Type: Message
Name: “Ben Smith” [unique] Started: 12 Aug 2014 08:00 Sent: 12 Aug 2014 08:00
Status: Active Header: “Great pin!” Text: “Great pin!”

Pin Id: 10001 [non-unique}

Zen @ Pinterest - 2014

Close to 10 million operations every second

Smart Feed Messages NEWE INnterests

eeee0 T-Mobile = : 2 eecee = 08:08 eesee T 100% ..

ee000 Verizon = 9 40% W)

< Michael, Susan

@ Camping! Who's bringing what?

News

TODAY'S STORIES

\ Alexandra Bond
7 liked 15 Pins

‘&/ .

R

Victor Ng
Pinned 7 new Pins from Ana Todd

By Anthony Samaniego

Skip Bronkie
Spectacular Ci...

Roasted Citrus Thyme . ' L D OV
Ombré Carrots == f ey Qe A
‘ ' . : ['l / / . » ”
‘ et : ﬁ Homemade hot chocolate
Cinemagraph by Jamie
Beck & Kevin Burg Yes! Marshmallows!
| Popular in
! i Cinemagraph

Beck & Kevin Burg el AL - ar
(ST p— 15’

Altay Sendil
Pinned 11 new Pins

Harry Wirth
followed REI

Cinemagraph by Jamie

Zen - Property

12345 (node)

10

name

Ben Smith

Data

SCore

distance

12345-20-67890 (edge)

1000

1 mile

Zen - Property Index

unique-10-name=ben smith 12345

nonuniq-10-lasthame=smith-12345

nonunig-10-lasthame=smith-67890

Zen - Edge Score Index

12345-out-20-1000-67890

12345-out-20-1001-67891

12345-in-30-990-67892

12345-in-30-991-67893

Zen - Edge Count

12345-out-20 2

12345-in-30 4

s T

- B -—t e
.

- T. o

-
')

/

//'{—
B 0 s |

MOVING SERVICES

{

1. Avold Hot Regions

Salt row keys to achieve uniform distribution
Reverse bits of auto increment integers
Prepend hash to row keys

Pre-split regions using uniform split

Tall table

2. Batch For Throughput

Bottleneck: HLog sync
Deferred HLog sync can lose data
Batching:
Client-side: batch APls for clients to do bulk insertion

Server-side: Zen Server to buffer edits across clients and
flush together

3. Tune For Performance

Memory v.s. Latency
Default: BLOOMFILTER => ‘ROW’, BLOCKSIZE => '8192

Special. BLOOMFILTER => ‘NONE’, BLOCKSIZE => ‘32768

CPU v.s. Data Size
Default: DATA BLOCK_ENCODING => ‘FAST DIFF’, COMPRESSION => ‘SNAPPY"

Special: DATA_BLOCK_ENCODING => ‘PREFIX’, COMPRESSION => ‘NONE’

4. Namespace for Isolation

Dedicated HBase cluster for big applications
Shared cluster with dedicated namespace for smaller ones

Namespace 1 - Namespace 2

MEM MEM

5. Coprocessor For Efficiency

Use Case: remove a large number of edges (feeds)
Usual Way:

Scan all edges of a node

Delete edges beyond a limit

Major compact to remove delete markers
Coprocessor

Trim in @ major compaction coprocessor

6. Best Effort Data Consistency

No distributed transaction: keep things simple and fast
Best effort to maintain data consistency:
Manual rollback in Zen server upon failures
Offline MapReduce jobs (Dr Zen) to scan and fix inconsistencies

lakeaways

The graph data model can be a convenient abstraction to
cut down product development time.

HBase has worked very well as a storage backend for Zen
for large scale user facing workloads.

