
hosted by

HBaseConAsia2018

HBase and OpenTSDB Practices
at Huawei

Pankaj Kumar, Zhongchaoqiang, Guoyijun, Zhiwei

{Pankaj.kr, zhongchaoqiang, guoyijun, wei.zhi}@huawei.com

hosted by

HBase Tech Lead @ Huawei India
Apache HBase Contributor
5 years of experience in Big Data related projects

$ whoami

3

HBase @ Huawei

Migrated from 1.0.2 version

1.3.1 version +

 Secondary index

 MOB

 Multi split

Migrating to 2.1.x cluster this year

Content

01

02

HBase Practices

OpenTSDB Practices

Accelerate HMaster Startup

Enhanced Replication

Reliable Region Assignment

HBase Practices

1.1 Accelerate HMaster Startup

7

Accelerate HMaster Startup
Problem:

HMaster not available for longer duration on failover/restart

Deployment scenario:
 Large cluster with 500+ nodes
 5000+ Tables and 120000 + regions
 10 namespaces

Discovered problems in multiple areas in Master startups like below
 Slow region locality computation on startup

 Serial region locality calculation
 Too much time spent in region locality calculation

 HMaster aborting due to namespace initialization failure
 Slow SSH/SCP
 Similar to HBASE-14190

 Table info loading was taking too much time
 High Namenode latency
 Many other services creating lots of load in NN

8

Accelerate HMaster Startup

 Slow region locality computation on startup

 Accelerate region Locality computation by computing in parallel

 Detach region locality computation on startup

 Similar solution HBASE-16570

 HMaster aborting due to namespace initialization failure

 Assign system table regions ahead of user table regions

 Assign system tables to HMaster (configure all system tables to

hbase.balancer.tablesOnMaster)

 On cluster/master startup, process old HMaster SSH/SCP ahead of other

RegionServer

 SSH/SCP will replay the WAL and assign the system table regions first

9

Accelerate HMaster Startup
 Table Info Loading on Master startup

Namespace HDFS Path

default t1/.tabledesc/.tableinfo.0000000001
t1/.tabledesc/.tableinfo.0000000002
t1/.tabledesc/.tableinfo.0000000003
t2/.tabledesc/.tableinfo.0000000001

hbase /hbase/data/hbase/acl/.tabledesc/.tableinfo.0000000001
/hbase/data/hbase/meta/.tabledesc/.tableinfo.0000000001
/hbase/data/hbase/namespace/.tabledesc/.tableinfo.0000000001

Operation Path Result Total RPC to NN

List operation to get path till
all the namespace

/hbase/data/* gets file status for all the
namespaces

1

List operation on each
namespace to get all the
tables in each namespace

/hbase/data/default get all the file status of
all the tables in each
namespace

2 (= total number of
namespaces in the
cluster)

List operation on each table
to get all the tableinfo files
for the table

/hbase/data/default/
t1/. tabledesc

get all the file status of
all the tableinfo files for
the table

5 (= total number of
tables in the cluster)

Open call for each table’s
latest tableinfo file

/hbase/data/default/
t1/.
tabledesc/.tableinfo.
0000000003

get the stream to
tableinfo file

5 (= total number of
tables in the cluster)

Total RPC 13

Example: Suppose there are two
namespace and total 5 tables with
below path structure in HDFS

Total RPC to NameNode
=
1 + namespace count
+ 2 * table count

10

Accelerate HMaster Startup
Table Info Loading on Master startup

 2011 RPC Calls (for 10 namespace and 1000 tables in a cluster)

 NN is busy then it will hugely impact the startup of HMaster.

Solution: Reduce number of RPC to Namenode

 HMaster makes a single call to get tableinfo path

 Get LocatedFileStatus of all tableinfo paths based on pattern

(/hbase/data/*/*/.tabledesc/.tableinfo*)

 LocatedFileStatus will also contain block locations of tableinfo file along with

FileStatus details

 DFS client will directly connect to Datanode through FileSystem#open() using

LocatedFileStatus, avoid NN RPC to get the block location of the tableinfo file

Improvement:

In a highly overloaded HDFS cluster, it took around 97 seconds to load 5000

tables info as compared to 224 seconds earlier.

1.2 Enhanced Replication

12

Adaptive call timeout

Problem:
 Replication may timeout when peer cluster is not able to replicate the

entries
 Can be solved by increasing hbase.rpc.timeout at source cluster

 Impact other RPC request
 In Bulkload replication scenario fixed RPC timeout may not

guarantee bigger HFile copy
 Refer HBASE-14937

Solution:
 Source cluster should wait longer
 New configuration parameter hbase.replication.rpc.timeout, default

value will be same as hbase.rpc.timeout
 On each CallTimeOutException increase this replication timeout value

by fixed multiplier
 Increase the replication to certain number of configured times

13

Cross realm support
Problem:
 Replication doesn’t work with Kerberos Cross Real Trust where

principal domain name is not machine hostname
 On new host addition

 Add principal name for the newly added hosts in KDC
 Generate a new keytab file
 Update it across other hosts

 Rigorous task for user to create and replace new keytab file

Solution:
 HBASE- 14866

 Configure the peer cluster principal in replication peer config

 Refer to HBASE-15254 (Open)

 No need to configure in advance, fetch at runtime.

 Make RPC call to peer HBase cluster and fetch the Principal

 Make RPC connection based on this server principal

1.3 Reliable Region Assignment

15

RIT Problem

Problem:

 Region stuck in transition for longer duration due to some fault in cluster

 Zookeeper node version mismatch

 Slow RS response

 Unstable Network

 Client will not be able to perform read/write operation on those regions which are in transition

 Balancer will not run

 Region can’t be recovered until cluster restart

Solution:

 Recover the regions by reassigning them

 Schedule a chore service

 Run periodically and identify the region which stuck in transition from a longer duration (configurable

threshold)

 Recover the region by reassigning them

 New HBCK command to recover regions which are in transition from longer duration

16

Double Assignment Problem

Problem:

 HMaster may assign region to multiple RegionServer in a faulty cluster environment

 Call time out from a overloaded RegionServer

 Old or new client may receive inconsistent data

 Can’t be recovered until cluster restart

Solution:

 Multiply assigned regions should be closed and assign uniquely

 Region server send server load details to HMaster through heartbeat

 Schedule a chore service which run periodically and recover the regions

 Collect each region server load from HMaster memory

 Identify the duplicate regions from the region list

 Validate the duplicate regions with HMaster Assignment Manager in-memory region state

 Close the region from the old region server

 Assign the region

17

Double Assignment Problem

Example:

HMaster

AM’s in-memory region state
r1:RS1 r2:RS3 r2:RS3 r4:RS1 r5:RS2 r6:RS3 r7:RS1 r8:RS2

Double Assignment Recovery Chore
Found region r2 s multiply assigned to RS2 & RS3, so r2 will be closed from RS2 as per AM’s in memory

state

Region Server (RS1)

r1, r4, r7

heartbeatheartbeat heartbeat

Region Server (RS2)

r2, r5, r8

Region Server (RS3)

r3, r6, r2

OpenTSDB Basics

OpenTSDB Improvement

OpenTSDB Improvement

2.1 TSDB Basics

20

Time Series

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

XX变化曲线图

风力 温度 水位

21

Time Series

……

……

……

Time SeriesData Point

A time series is a series of numeric data points
of some particular metric over time.

- OpenTSDB Document

22

OpenTSDB Schema

sys.cpu.user host=webserver01,cpu=0 1533640130 20
sys.cpu.user host=webserver01,cpu=0 1533640140 25
sys.cpu.user host=webserver01,cpu=0 1533640150 30
sys.cpu.user host=webserver01,cpu=0 1533640160 32
sys.cpu.user host=webserver01,cpu=0 1533640170 35
sys.cpu.user host=webserver01,cpu=0 1533640180 40

metric name tags timestamp
valu
e

OpenTSDB uses a metric name and a group of tags
for identifying time series. Tags are used to identify
different data sources.

23

TSDB Characteristics

• Write Dominate. Read rate is usually a

couple orders of magnitude lower.

• Most queries happens on latest data.

• Most queries are for aggregate analysis

instead of individual data point.

• Primarily Inserts. Updates/deletions are

rarely happens.

24

Basic Functionality For TSDB

• Rollups and Downsampling

• Pre-aggregates and Aggregates

• Interpolation

• Data Life Cycle Management

25

时序数据库单值 vs.多值
Metric TimeStamp DeviceID DeviceType ZoneId Temperature Pressure WaterLine

Engine

20180101 12:00:00 ID001 TypeA 1 66.9 1.33 42.5

20180101 12:00:00 ID002 TypeA 1 68.8 1.28 42.0

20180101 12:00:00 ID003 TypeA 1 67.3 1.35 41.7

20180101 12:01:00 ID001 TypeA 1 67.5 1.30 42.2

Metric TimeStamp DeviceID DeviceType ZoneId Value

Temperature 20180101 12:00:00 ID001 TypeA 1 66.9

Pressure 20180101 12:00:00 ID001 TypeA 1 1.33

WaterLine 20180101 12:00:00 ID001 TypeA 1 42.5

Temperature 20180101 12:01:00 ID002 TypeA 1 68.8

Pressure 20180101 12:01:00 ID002 TypeA 1 1.28

WaterLine 20180101 12:01:00 ID002 TypeA 1 42.0

Tags Field

Tags

Time stampMetric

Time stampMetric Metric Value

Single value model vs. Multi-value model

26

Time Series Storage In HBase

KeyValue KeyValue KeyValue KeyValue KeyValue KeyValue

DataPoint
（T1）

DataPoint
（T7）

Time Series A (20180808-10) (Writing Block)

KeyValue

Compacted DataPoints

Time Series A (20180808-
09)

KeyValue

Compacted DataPoints

Time Series A (20180808-
08)

KeyValue

Compacted DataPoints

Time Series A (20180808-07)

Time Series Separeted into multiple blocks. Each block hold

one hour of data points.

DataPoint
（T2）

DataPoint（T3） DataPoint（T4） DataPoint
（T5）

DataPoint
（T6）

Closed Blocks

27

OpenTSDB Table Design

RowKey Format

Qualifier Format

1BYTE 3BYTES 4BYTES 3BYTES 3BYTES 3BYTES 3BYTES

SALT Metric ID Timestamp Tag Name ID Tag Value ID Tag Name ID Tag Value ID

1 <= N <= 8

2 BYTES

Timestamp ValueLengthValueType

KeyValue KeyValue KeyValue KeyValue KeyValue KeyValue

DataPoint
（T1）

Time Series A (20180808-10) (Writing Block)

DataPoint
（T2）

DataPoint（T3） DataPoint（T4） DataPoint
（T5）

DataPoint（T6）

28

OpenTSDB Compaction

KeyValue KeyValue KeyValue KeyValue KeyValue KeyValue

DataPoint（T1） DataPoint
（T2）

DataPoint
（T3）

DataPoint
（T4）

DataPoint（T5） DataPoint（T6）

KeyValue

DataPoint（TX）

KeyValue KeyValue KeyValue KeyValue KeyValue KeyValue

DataPoint
（T1）

DataPoint（T2） DataPoint（T3） DataPoint
（T4）

DataPoint
（T5）

DataPoint
（T6）

KeyValue

DataPoint（TX）

1. Read All Data Points from the block of Last Hour

2. Compact locally

KeyValue

DataPoints of whole block

3. Write compact row, and delete all exist individual data points

KeyValue

DataPoints of whole block

Delete Marker

2.1 OpenTSDB Improvement

30

Exist OpenTSDB Compaction Flow

OpenTSDB compaction is
helpful for read, and could
decrease total data amount，
but the side effects as follows:

1. OpenTSDB Compaction
requires a read/compact/write
cycle, causing extremely high
traffic to RegionServers.

2. Write compact row and
delete exist individual data
points amplify write I/O.

CompactionQueue

Metric1_Hour1

Metric2_Hour1

Metric3_Hour1

Metric1_Hour2

Metric2_Hour2

Metric3_Hour2

Metric1_Hour3

Metric2_Hour3

Metric3_Hour3

Put

Read and
Remove

Put and Delete
Get

Add RowKey

OpenTSDB
Compact

Logic

H
T

TP
 H

an
d

ler

Compaction
Thread

HBase

TSD

31

HFileHFile

HFile

HFile MemStore

HFile MemStore

Client(TSD)





 1. TSD client read time series data
from Regionserver.

2. TSD write compacted row and
delete marker to RegionServer.

3. HBase internal compaction.

Understanding Write Amplification

Client(TSD)

Single Datapoint Delete Marker Compact Row

32

New OpenTSDB Compaction Flow

New HBase Compaction
implementation for OpenTSDB
that could compact data points
during hbase compaction
running.

Making TSD focus on handing
user read/write requests only.

OpenTSDB

OpenTSDB
Compact

Logic

Read
One Row

Write
Compact

Rows

HBase

Put

Compaction
Thread

HTTP Handler

Region1

Region2

Region3

RegionN

........

HFile

HFile

HFile

New
HFile

33

No More Extra Write Amplification

HFile

HFile MemStore

Client(TSD)


HFile HFile

Compaction

No more extra write
amplication caused by
OpenTSDB data points
compaction.

34

NOTE: TSDs were limited to 300,000 data points per second.

After optimization, write throughtput has been improved

significantly.

Benchmark – Throughput comparison

35

Benchmark – CPU And IO Comparison

36

 Delete old data automatically for

reduce data load.

 HBase Table level TTL is a coarse-

grained mechanism, But different

metrics may have different TTL

requirements.

 A new HBase compaction

implementation for per-metric

level data life cycle management.

Data Life Cycle Management Per Metric

OpenTSDB

OpenTSDB
TTL

Logic

Read One
Row

Write
Unexpired

Rows

HBase

Put

Compaction
Thread

HTTP Handler

Region1

Region2

Region3

RegionN

........

HFile

HFile

HFile

New
HFile

37

Using a two-level thread model design. Receive message, process
message and response to client are all handled by one WorkThread. It
causes the low CPU usage.

TSD

workerThread

RegionServer1WorkerThread

RegionServer2

RegionServer3

workerThread

OpenTSDB RPC Thread Model

Receive Msg

Process Msg

Response Msg

38

Benchmark:

Query latency got at least 3X
improvement for concurrent
queries.

Before After

1 Query 60ms 59ms

10 Concurrent Queries 476ms 135ms

50 Concurrent Queries 2356ms 680ms

Modify the thread model to a Three-Level design. Receiving message and
handling message are finished in different threads. Better CPU usage.

RPC Thread Model Improvement

Boss
Thread

Read Thread

Read Thread

Read Thread

Queue

Worker Thread
write read

Worker Thread

Worker Thread

... ...
Boss

Thread

Worker Thread

Worker Thread

Worker Thread

...

39

Follow Us（关注我们）

微信公众号华为云CloudTable

NoSQL漫谈公有云HBase服务

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without

limitation, statements regarding the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that could cause actual

results and developments to differ materially from those expressed or implied in the

predictive statements. Therefore, such information is provided for reference purpose

only and constitutes neither an offer nor an acceptance. Huawei may change the

information at any time without notice.

Thank You.

