
hosted by

HTAP DB—System : ApsaraDB

HBase Phoenix and Spark

Yun Zhang & Wei Li

August 17,2018

hosted by

Content

01

02

Phoenix Over ApsaraDB

HBase

Spark & ApsaraDB

HBase/Phoenix

hosted by

Phoenix Over ApsaraDB HBase1

hosted by

Content
1.1

1.2

1.4

1.3

Architecture

Use Cases

Best Practice

Challenges & Improvements

hosted by

Phoenix Over ApsaraDB HBase1.1

hosted by

Phoenix-As-A-Service

● Orientations

○ Provides OLTP and Operational analytics over ApsaraDB HBASE

● Targets

○ Make HBASE easier to use

■ JDBC API/SQL

○ Other functions

■ Secondary Index

■ Transaction

■ Multi tenancy

■ …

Phoenix-as-a-service over ApsaraDB HBase

hosted by
Phoenix Architecture
Thick Phoenix Client Architecture

Upgrades client is very painful as a cloud service!

hosted by
Phoenix Architecture
Thin Phoenix Client Architecture

Lower maintenance cost as a cloud service!

hosted by

Use Cases1.2

hosted by

Use Case 1
LOT Scenario

● Data

○ Big table(Spatial Temporal Data) 100 million+

○ Small table(User Information) less than 1 million

● Functional Requirements

○ Hash join(big table join small table)

○ Staled table (avoid hot spotting)

○ Secondary index

● Other Requirements

○ Latency less than 2 seconds (100 vertices of polygon)

○ Scale out

hosted by

Use Case 1
Architecture

hosted by

Use Case 1
Query

hosted by

Use Case 2
Internet Company Scenario

● Data

○ 350+ million/per day

○ 500G+/per day(uncompress)

● Functional Requirements

○ Staled table (avoid hot spotting)

○ Secondary index(multidimensional analytics)

● Other Requirements

○ Latency less than 200 Millisecond

○ 6+ index tables

○ Scale out

hosted by

Use Case 2
Architecture

hosted by

Best Practices1.3

hosted by

Best Practices
Table Properties

1. Recommend to set UPDATE_CACHE_FREQUENCY when

create table (120000ms as a default value)

2. Used pre-splitting keys is better than slated table.(Range scan

is limited when use slate buckets)

3. Pre-splitting region for index table(if your data tables are salted

table, index tables will inherit this property).

4. SALT_BUCKETS is not equal split keys(pre-splitting region)!!!

hosted by

Best Practices
Query Hint

1. Use USE_SORT_MERGE_JOIN when join bigger tables.

2. Use NO_CACHE will avoid caching any HBase blocks loaded,

which can reduce GC overhead and get better performance. it is

used export data query, such as UPSERT…SELECT clause.

3. Use SMALL will save an RPC call on the scan, Which can reduce

network overhead. it is used hit the small amount of data of query.

hosted by

Best Practices
Composite Key

Where Conditions Status

A=x and B=x and C=x Best

A=x and B=x Better

A=x OK

B=x and C=x Not recommended

C=x Dangerous

Data table composite key Index table composite key

CREATE TABLE DATA_TABLE(

A VARCHAR,

B VARCHAR,

C VARCHAR,

D INTEGER,

CONSTRAINT PK PRIMARY KEY(A, B, C))

CREATE INDEX IDX_NAME

ON DATA_TABLE(A, B, C)

hosted by

Best Practices
Other Tips

1. Recommend to use global index on massive data table

2. Reasonable to use Row timestamp that affects visibility of data

3. More index tables depressed write throughput

hosted by

Challenges & Improvements1.4

hosted by

Challenges

● Availability

○ Sometimes index table become unavailable.

● Stability

○ Full scan/complex queries affects cluster’s stability

● Users Complaints

○ queries can’t automatically choose the best index table

○ Using Python client get worse performance.

○ Lack of data transferring tools (data import/export)

○ Scarce monitor metrics

○ ...

hosted by

Improvements

● Stability

○ Phoenix Chaos Monkey test framework

● Availability

○ Support infinite retry policy when writing index failures to

avoid degrade to full scan data table.

● Producibility

○ Recognizes some full scan/complex queries and reject on the

Server(Query Server) side

○ Integrate monitor platform

○ Other new features

■ Alter modify column/rename

■ Reports rate of progress When creating index

hosted by

Spark & ApsaraDB

HBase/Phoenix2

hosted by

Spark &
ApsaraDB HBase

2.1

2.2

2.3

Overview

Scenario

Architecture &

Implementation

hosted by

Overview2.1

hosted by

Overview
HBase/phoenix requirements

1

2

3

4

Bulkload

Users need bulkload large number

of data to hbase/phoenix fastly

Real time etl/load

As data visibility，user need

realtime etl and load to

hbase/phoenix

Analysis

Phoenix not good at

complex analysis

Elastic resource

Phoenix uses hbase coprocessors

to do analysis, but hbase cluster

resource has limitation

Why?

hosted by

Overview
what can spark bring to ApsaraDB HBase

Compute resources

HBase/

Phoenix Spark

analysis bulkload
realtime

load

spark

build index

➢ Analysis:

• spark as a unified analytics engine，support SQL 2003

• Use dag support complex analysis

➢ Bulkload：spark can support multi datasource like jdbc, csv, elasticsearch,

mongo; have elastic resource

➢ Realtime load：struct streaming easy to do etl, and load to hbase

hosted by

Architecture & Implementation2.2

hosted by

Architecture & implementation
Use ApsaraDB HBase and spark construct big data platform

➢ BATCH LAYER : use spark sql/dataset analysis HBase/Phoenix, also

bulkload other datasources to HBase

➢ SPEED LAYER : use struct streaming etl data from kafka, and increment

load into HBase

➢ SERVING LAYER : User query result data from HBase/Phoenix

hosted by

spark sql& HBase
how spark sql analysis HBase/Phoenix?

➢ SQL API：use spark sql analysis hbase，table meta in hive metastore

➢ Performance:
• distributed scan;

• sql optimize like partition pruning、column pruning、predicate pushdown；
• direct reading hifles；
• auto transform to column based storage

hosted by

spark sql& HBase

CREATE TABLE HBaseTest USING org.apache.spark.sql.execution.datasources.hbase

OPTIONS ('catalog'=

'{

"table":{"namespace":"default", "name":”TestTable", "tableCoder":"PrimitiveType"},

"rowkey":"key",

"columns":{

"col0":{"cf":"rowkey", "col":"key", "type":"string"},

"col1":{"cf":"cf1", "col":"col1", "type":"boolean"},

"col2":{"cf":"cf2", "col":"col2", "type":"double"},

"col3":{"cf":"cf3", "col":"col3", "type":"float"},

"col4":{"cf":"cf4", "col":"col4", "type":"int"},

"col5":{"cf":"cf5", "col":"col5", "type":"bigint"},

"col6":{"cf":"cf6", "col":"col6", "type":"smallint"},

"col7":{"cf":"cf7", "col":"col7", "type":"string"},

"col8":{"cf":"cf8", "col":"col8", "type":"tinyint"}

}

}’

)

demo:CREATE TABLE

hosted by

spark sql& HBase

• partition pruning：use col0 < ‘row050‘ to perform the needed regions

• predicate pushdown：col2 >’10.0 filter will pushdown to hbase scan

• column pruning: only scan the needed column

Performance:
• Data scale:500208
• Native HBaseRDD: HadoopRDD use TableInputFormat
• Spark SQL:spark hbase datasource

beeline> select count(col2) from HBaseTest where col0 < 'row050‘ and col2

>’10.0

demo and performance

类型 时间 结果

Native HBaseRDD 14.425s 5788

Spark SQL 1.036s 5788

hosted by

Spark struct streaming& HBase
demo

val catalog =

s"""{

|"table":{"namespace":"default", "name":"structStreamingCount", "tableCoder":"PrimitiveType"},

|"rowkey":"key",

|"columns":{

|"value":{"cf":"rowkey", "col":"key", "type":"string"},

|"count":{"cf":"cf1", "col":"count", "type":"int"}

|}

|}""".stripMargin

val lines = spark.XXX.load()

val wordCounts = lines.as[String].flatMap(_.split(" ")).filter($"value"=!="").groupBy("value").count()

val query = wordCounts.

writeStream.

outputMode("update").

format("org.apache.spark.sql.execution.datasources.hbase.HBaseSinkProvider").

option("checkpointLocation", “xxxx").

option("hbasecat", catalog).

start()

hosted by

Scenario2.3

hosted by

Scenario 1
big data online reporting services

➢ Specialty
• Online service
• Dimension table

➢ Case
• Mobile game：Real-time user activity in different

regions
• Business：Different types of goods pv real-time

report

hosted by

Scenario 2
big data complex reporting services

➢ Specialty
• Complex analysis
• Datawarehouse
• Quasi-real time

➢ Case
• Mobile game：Comparison of user activity in different

age groups during the same period

hosted by

Scenario 3
log indexes and query

➢ Specialty
• collect logs in real time
• log indexes and query

➢ Case
• Log service system

hosted by

Scenario 4
time series query and monitoring

➢ Specialty
• Time series data
• Multi metrics
• Time series query

➢ Case

• IOT、service and business monitoring system

hosted by

We are hiring!

➢ If you are interested in the unified online sql analysis
engine

➢ If you are interested in the spark kernel and ecosystem

ApsaraDB HBase

DingDing Community
Yun Zhang (wechat)

Phoenix

Wei Li (wechat)

Spark

hosted by

Thanks

