
hosted by

HBaseConAsia2018

JanusGraph —
Distributed graph database with HBase

XueMin Zhang @ TalkingData



hosted by

Content
01

02

04

03

About Us

Something about Graph

Introduction to JanusGraph

JanusGraph with HBase



hosted by

Content
01

02

04

03

About Us

Something about Graph

Introduction to JanusGraph

JanusGraph with HBase



hosted by

About us

• Seven years of practical experience in technical research and development(R&D),focusing 

on distributed storage, distributed computing, real-time computing, etc.

• Successively worked in Sina Weibo and TalkingData, and served as the big data Team 

Leader of Sina r&d center.

• Technical speechers on the platforms of China Hadoop, Strata Hadoop/Data Conference 

and DTCC.

About me

• Founded in 2011, TalkingData is China’s leading third-party big data platform. With 

SmartDP as the core of its data intelligence application ecosystem, TalkingData empowers 

enterprises and helps them achieve a data-driven digital transformation.

• From the beginning, TalkingData’s vision of using “big data for smarter business 

decisions and a better world” has allowed it to gradually become China’s leading data 

intelligence solution provider. TalkingData creates value for clients and serves as their 

“performance partner,” helping modern enterprises achieve data-driven transformation 

and accelerating the digitization of clients from various industries. Using data-generated 

insights to change how people see the world and themselves, TalkingData hopes to 

ultimately improve people’s lives.

About TalkingData



hosted by

Content
01

02

04

03

About Us

Something about Graph

Introduction to JanusGraph

JanusGraph with HBase



hosted by

Something about Graph
What is a Graph Database 

 As name suggests, it is a database.

 Uses graph structures for semantic queries with nodes, edges 
and properties to represent and store data.

 Allow data in the store to be linked together directly.

 compare with traditional relational databases

 Hybrid relations. 

 Handy in finding connections between entities.



hosted by

Something about Graph
Graph Structures - Vertices 

 Vertices are the nodes 
or points in a graph 
structure 

 Every vertex may 
contain a unique ID.



hosted by

Something about Graph
Graph Structures - Vertices 

 Vertices are the nodes 
or points in a graph 
structure

 Every vertex may 
contain a unique ID.

 Vertices can be 
associated with a set 
of properties (key-
value pairs) 



hosted by

Something about Graph
Graph Structures - Edges 

 Edges are the 
connections between the 
vertices in a graph 



hosted by

Something about Graph
Graph Structures - Edges 

 Edges are the connections 
between the vertices in a 
graph

 Edges can be 
nondirectional, 
directional, or 
bidirectional 



hosted by

Something about Graph
Graph Structures - Edges 

 Edges are the 
connections between the 
vertices in a graph

 Edges can be 
nondirectional, 
directional, or 
bidirectional 

 Edges like vertices can 
have properties and id



hosted by

Something about Graph
Graph Structures - Graph 

 G = (V, E) 

 The graph is the 
collection of vertices, 
edges, and associated 
properties 

 Vertices and edges can 
use label 
classification



hosted by

Something about Graph
Graph Storage Model - Adjacency Matrix

0 1 1 1 0 0

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

1 2 3 4 5 6G.vertices =

G.edges = 1

2

3

4

5

6

1 2 3 4
5 6



hosted by

Something about Graph
Graph Storage Model - Adjacency Lists

1

2

3

4

5

6

2 3 4 Λ

1 Λ

1 4 6 Λ

1 3 5 Λ

4 Λ

3 Λ



hosted by

Content
01

02

04

03

About Us

Something about Graph

Introduction to JanusGraph

JanusGraph with HBase



hosted by

Introduction to JanusGraph

 Scalable graph database distribute on multi-maching clusters with
pluggable storage and indexing.

 Fully compliant with Apache TinkerPop graph computing framework.

 Optimized for storing/querying billions of vertices and edges.

 Supports thousands of concurrent users.

 Can execute local queries (OLTP) or cross-cluster distributed 
queries (OLAP).

 Sponsored by the Linux Foundation.

 Apache License 2.0



hosted by

Introduction to JanusGraph
Architecture



hosted by

Introduction to JanusGraph
Apache Tinkerpop & Gremlin

 A graph computing 
framework for both graph 
databases (OLTP) and 
graph analytic systems 
(OLAP)

 Gremlin graph traversal 
language 



hosted by

Introduction to JanusGraph
Schema and Data Modeling 

 Consist of edge labels, property keys, vertex labels ,index

 Explicit or Implicit 

 Can evolve over time without database downtime 



hosted by

Introduction to JanusGraph
Schema - Edge Label Multiplicity 

 MULTI: Multiple edges of the same label between vertices 

 SIMPLE: One edge with that label (unique per label) 

 MANY2ONE: One outgoing edge with that label 

 ONE2MANY: One incoming edge with that label 

 ONE2ONE: One incoming, one outgoing edge with that label 



hosted by

Introduction to JanusGraph
Schema - Property Key Data Types 



hosted by

Introduction to JanusGraph
Schema - Property Key Cardinality 

 SINGLE: At most one value per element. 

 LIST: Arbitrary number of values per element. Allows 
duplicates. 

 SET: Multiple values, but no duplicates. 



hosted by

Introduction to JanusGraph
Storage Model 



hosted by

Introduction to JanusGraph
What is Graph Partitioning?

 When the JanusGraph cluster consists of multiple storage 
backend instances, the graph must be partitioned across 
those machines.

 Stores graph in an adjacency list , ssignment of vertices to 
machines determines the partitioning.

 Different ways to partition a graph 

 Random Graph Partitioning 

 Explicit Graph Partitioning



hosted by

Introduction to JanusGraph
Random Graph Partitioning

 Pros 

 Very efficient

 Requires no configuration 

 Results in balanced partitions 

 Cons

 Less efficient query processing as the cluster grows 

 Requires more cross-instance communication to retrieve 
the desired 



hosted by

Introduction to JanusGraph
Explicit Graph Partitioning

 Pros 

 Ensures strongly connected subgraphs are stored on the 
same instance 

 Reduces the communication overhead significantly 

 Easy to setup

 Cons

 Only enabled against storage backends that support 
ordered key

 Hotspot issue



hosted by

Introduction to JanusGraph
Edge Cut & Vertex Cut

 Edge Cut

 Vertices are hosted on separate machines.

 Optimization aims to reduce the cross communication and thereby 
improve query execution.

 Vertex Cut (by label)

 A vertex label can be defined as partitioned which means that 
all vertices of that label will be partitiond across the 
cluster.

 In other words, Storing a subset of that vertex’s adjacency 
list on each partition .

 Address the hotspot issue caused by vertices with a large 
number of incident edges.



hosted by

Introduction to JanusGraph
What is Graph Index?

 graph indexes : efficient retrieval of vertices or edges by 
their properties

 Composite Index (supported through the primary storage 
backend)

 Mixed Index (supported through external indexing backend)

 vertex-centric indexes : effectively address query
performance for large degree vertices



hosted by

Content
01

02

04

03

About Us

Something about Graph

Introduction to JanusGraph

JanusGraph with HBase



hosted by

JanusGraph with HBase
HBase – Perfect Storage Backend for JanusGraph

 Tight integration with the Apache Hadoop ecosystem.

 Native support for strong consistency.

 Linear scalability with the addition of more machines.

 Scalability and partitioning

 Read and write speed

 Big enough for your biggest graph

 Support for exporting metrics via JMX.

 Great open community

http://hadoop.apache.org/
http://en.wikipedia.org/wiki/Strong_consistency
http://en.wikipedia.org/wiki/Java_Management_Extensions


hosted by

JanusGraph with HBase
HBase – Perfect Storage Backend for JanusGraph

 Simple configuration

 storage.backend=hbase

 storage.hostname=zk-host1,zk-host2,zk-host3

 storage.hbase.table=janusgraph

 storage.port=2181

 storage.hbase.ext.zookeeper.znode.parent=/hbase



hosted by

JanusGraph with HBase
HBase – Perfect Storage Backend for JanusGraph

 A variety of reading and writing way 

 Batch to mutate

 Get or Multi Get

 Key range scan 

 ColumnRangeFilter

 ColumnPaginationFilter



hosted by

JanusGraph with HBase
HBase Storage Model - Column Families

CF attributes can be set. E.g. compression, 
TTL. 

 Edge store -> e

 Index store -> g

 Id store -> i

 Transaction log store -> l

 System property store -> s



hosted by

JanusGraph with HBase
HBase Storage Model - Edge store -> e

 Storage vertex label, edge, property data

 RowKey -> Vertex ID

• Count 

• ID padding 

• Partition ID

 Vertex label save as edge

 Vertex property and edge save as relation

• Relation ID（ Property key id / Edge label id + direction )



hosted by

JanusGraph with HBase
HBase Storage Model - Edge store -> e



hosted by

JanusGraph with HBase
HBase Storage Model - Index store -> g

 Storage graph indexes (Composite Index) data

 Rowkey -> property values

 Cell value->

• relationId

• outVertexId

• typeId

• inVertexId



hosted by

JanusGraph with HBase
Optimization Suggestions

 hbase.regionserver.thread.compaction.large/small

 hbase.hstore.flusher.count

 hbase.hregion.memstore.flush.sizeh

 base.hregion.memstore.block.multiplier

 hbase.hregion.percolumnfamilyflush.size.lower.bound

 hbase.regionserver.global.memstore.size

 hfile.block.cache.size

 hbase.regionserver.global.memstore.size.lower.limit
（hbase.regionserver.global.memstore.lowerLimit）

 Random vs. Explicit Partitioning



hosted by

Thanks


