
Separating hot-cold data

into heterogeneous storage

based on layered compaction

Allan Yang（HBase Committer）

Content 01

02

03

Typical Scenarios at Alibaba

Hot-cold Data Separation
 — Hot-cold Data Recognition

 — Layered Compaction

 — Query Optimizations

Conclusions

Typical Scenarios at Alibaba 01

Typical Scenarios at Alibaba

Contacts&Chat AI BOTs Risk Control

Bills Logistics tracking GMV

Typical Scenarios

Commonality in some Scenarios

 Mass data

 No TTLs

 Only very small parts of data is

frequently visited

 Hotspots change as time goes by

Definitions

Hot Data

• Access very frequently

• Relatively small amount

• Low latency is very critical

HOT

COLD

Hot Data

• Access very frequently

• Relatively small amount

• Low latency is very critical

Cold Data

• Access rarely

• Big amount

• Cost is more concerned

Hot-cold Data Separation 02

Old Architecture

Pros

• Simple, no HBase code change

needed

Cons

• High maintenance cost

• Client aware

• Hard to keep consistency

Client

Cold Table Hot Table

Coprocessor

CopyTable

Replication

……

Write

Hot query

Cold query

Current Architecture

• Separating hot cold data

automatically in a single table

• Transparent to user

• Different storage policy for

each layer

• Auto query optimization

Hot-cold Data Separation

 — Hot-cold Data Recognition

 — Layered Compaction

 — Query Optimizations

Separating hot cold data

The Problems of separating data by KV timestamp

• Timestamp may not represents the heat of business data very

well

• KeyValue’s timestamp is also used as version number in HBase

e.g. Write an order ID advance in current ts

e.g. Data Source(Kafka, Spark…) delayed, resulting ts lag

Secondary Field slicer

Besides ts, we provide a way to parse a Secondary Field from

Rowkey, use it as the boundary of Hot/Warn/Cold data

• FixPosFieldSlicer

• DelimiterFieldSlicer

Rowkey:
Fixed size prefix

16bit UserID 64bit timestamp Postfix

Secondary Field

Variant size prefix

Variant prefix 64bit timestamp Postfix

Secondary Field

Rowkey:

Delimiter

Hot-cold Data Separation

 — Hot-cold Data Recognition

 — Layered Compaction

 — Query Optimizations

Default compaction in HBase

 Default HBase compaction

Strategy is Size-Tiered,

which is aimed to compact

small files to bigger files.

Size-Tiered Compaction Strategy

• Size is the only concern

• Old data and new data will spread

around all HFiles

• Can’t be used for Separating hot

cold data

Time range of HFile

Time range we want

Date-Tiered Compaction Strategy

Date-Tiered Compaction Strategy(HBASE-15181)

 Time Window

Compact multiple time windows in to one tier when

time goes by. The older, the bigger tier is.

Logic view Physical view

Separating hot cold data

• Only Cold/Warm/Hot window is needed

• Data will move from hot to warn then to Cold window

• Secondary Filed or timestamp is used

 Our layered compaction is inspired by Date-tiered

Compaction.

Layered Compaction

• HFile flushed by Memstore is
always in L0

• Hot/Warm/Cold layer have
their own compaction
Strategy

• Data is separated by
secondary field or timestamp

• Data out of boundary will be
compacted out to next layer

Layered Compaction

• Compactor will output multiple HFiles

according to the separation boundary

• Secondary Field range will be written

into the FileInfo section of HFile

 e.g.

Rowkey:userid+ts

UserA002

UserA005

UserB003

UserB007

Secondary Field Range: 002…007

HFile

HFile
HFile

Compactor

HFile
(hot)

HFile
(cold)

Secondary

Field

Range

Secondary

Field

Range

Heterogeneous storage

We can specify Data encoding,

Compression, and storage type for

each layer

Here is an example:

Type
Data

Encoding
Compression Storage

Hot None None SSD/RAM

Warn DIFF LZO One_SSD

Cold DIFF LZ4 HDD/EC

RAM

RAM

RAM

SSD

SSD

SSD

All_RAM All_SSD

Erasure-Coding

SSD

HDD

HDD

One_SSD

HDD

HDD

HDD

All_HDD

Storage Computing Separation

• Apsara HBase Provide a

Architecture of storage

computing separation

• High density HDD will be

available in Apsara HBase

about this September.

Welcome to try Apsara HBase at
https://www.aliyun.com/product/hbase

Apsara HBase

https://www.aliyun.com/product/hbase
https://www.aliyun.com/product/hbase
https://www.aliyun.com/product/hbase

Hot-cold Data Separation

 — Hot-cold Data Recognition

 — Layered Compaction

 — Query Optimizations

HBase Read Path

A quick tour of HBase read path

HFile4 is filtered out by:

•Bloom filter

•Time range

•Key range

HFile 1 HFile 2

HFile3 HFile4

Store
Memstore

Region

Memstore HFile 2

HFile3 HFile 1 HFile 2

HFile3 Memstore

Scan Start

Scan End

KeyValue Heap

Goal of Query Optimization

• Query optimization is only for hot

queries

• We have to try our best to filter out

the cold HFiles, avoid seek in them.

• Seeking in cold HFiles can

tremendously increase RT for hot

queries

HFile
(hot)

HFile
(cold)

KeyValue Heap

Client

Query

Query Optimization: Case 1

• Scenario: Monitoring, e.g. OpenTSDB

• Rowkey: MetricName + ts + postfix(tags)

Rowkey ts

cpuA001server1 001

cpuA002server1 002

cpuA003server1 003

cpuA004server1 004

diskB001server1 001

diskB002server1 002

diskB003server1 003

diskB004server1 004

Separate data by

boundary: ts = 003

HFile(hot)

cpuA003server1

cpuA004server1

disk003server1

diskB004server1

Time Range:

003…004

HFile(cold)

cpuA001server1

cpuA002server1

diskB001serve1

diskB002server

Time Range:

001…002

Optimization:
Scan.setTimeRang

e(003, 004)

Cold HFile can be

filtered out easily by

time range

Query: Scan scan = new Scan(cpuA003, cpuA004)

Query Optimization: Case 2

• Scenario: Tracing system

• Rowkey: TraceID (events are recorded in different column)

Rowkey ts

traceid1 001

traceid2 002

traceid3 003

traceid4 004

traceid5 005

traceid6 006

traceid7 007

traceid8 008

Separate data by

boundary: ts = 004

HFile(hot)

traceid5

traceid6

traceid7

traceid8

Bloom Filter

HFile(cold)

traceid1

traceid2

traceid3

traceid4

Bloom Filter

Optimization:
Cold HFile can be filtered

out by Bloom Filter

Problem:

false positive of bloom filter

can cause spikes

Query: Get get= new Get(“traceid7”)

Row,column,ts

Row1,f:q,008

Row2,f:q,007

Row2,f:q,006

Row3,f:q,005

Time Range:

005…007

Row,column,ts

Row1,f:q,001

Row2,f:q,003

Row2,f:q,002

Row3,f:q,004

Time Range:

001…004

Query: Select row >= Row2,f:q and limit =1

Fake row:

row2,f:q,008

Row1,f:q,008

Row2,f:q,007

Row2,f:q,006

Row3,f:q,005

Time Range:

005…008

Fake row:

row2,f:q,004

Row1,f:q,001

Row2,f:q,002

Row2,f:q,003

Row3,f:q,004

Time Range:

001…004

① ①

① ①

②

KeyValue Heap KeyValue Heap
Lazy Seek

Create a fake row with

biggest ts possible

HFile1 HFile2
HFile1 HFile2

Lazy Seek (HBASE-4465)

Scenario: KV Store
Rowkey: key（with only one qualifier）

28

HFile(hot)

Fake row:

Row5,f:q1, 006

Row4,f:q1

Row5,f:q1

Row6,f:q1

Bloom Filter

Time Range:

004…006

Separate data by

boundary: ts = 004

Query: Get get= new Get(“Row5,f:q1”)

HFile(cold)

Fake row:

Row5,f:q1, 003

Row1,f:q1

Row2,f:q1

Row3,f:q1

Bloom Filter

Time Range:

001…003

Optimization:
Cold HFile will not be

seeked because of

lazy seek

Row,Column ts

Row1,f:q1 001

Row2,f:q1 002

Row3,f:q1 003

Row4,f:q1 004

Row5,f:q1 005

Row6,f:q1 006

False positive of

bloom filter

 Query Optimization: Case 3

• Scenario: KV Store

• Rowkey: key（with only one qualifier）

29

HFile(hot)

trace2Collect005

trace2Arrive006

trace2Delivery007

trace2Done008

Time Range:

005…008

Separate data by

boundary: ts = 004

Query: Scan scan = new Scan(“trace2” , “trace2~”)

Rowkey ts

trace1Collect001 001

trace1Arrive002 002

trace1Delivery003 003

trace1Done004 004

trace2Collect005 005

trace2Arrive006 006

trace2Delivery007 007

trace2Done008 008

HFile(cold)

trace1Collect001

trace1Arrive002

trace1Delivery003

trace1Done004

Time Range:

001…004

Problem:
Scan with prefix, no time

range can be provided

Query Optimization: Case 4

• Scenario: Logistics tracking in Alibaba

• Rowkey: traceNo + actionCode + ts

30

Fixed size prefix

32bits traceNo actionCode ts

Other parts of Rowkey

Bloom Filter

Generate Check

HFile(hot)

trace2Collect005

trace2Arrive006

trace2Delivery007

trace2Done008

Prefix

Bloom Filter

HFile(cold)

trace1Collect001

trace1Arrive002

trace1Delivery003

trace1Done004

Prefix

Bloom Filter

Query: Scan scan = new Scan(“trace2” , “trace2~”)

Prefix Bloom Filter

 • Use the prefix part of a rowkey to generate and to check

bloom filter

31

HFile(hot)

userA991

userA992

userA993

userA994

Time Range:

005…008

Separate data by

boundary: ts = 004

Query: Scan scan = new Scan(“userA”), Limit 4

Rowkey ts

userA991 008

userA992 007

userA993 006

userA994 005

userA995 004

userA996 003

userA997 002

userA998 001

HFile(cold)

userA995

userA996

userA997

userA998

Time Range:

001…004

Problem:
Scan with prefix, no endkey, no

time range can be provided

Query Optimization: Case 5

• Scenario: Bills History in Alibaba

• Rowkey: userID + reverse(ts) + (oderID)

32

Secondary Field Lazy Seek

prefix

32bits userID ts

Secondary Field

HFile(hot)

Fake Row: userA991

userA991

userA992

userA993

userA994

Secondary Field Range:

991…994

HFile(cold)

Fake Row: userA995

userA995

userA996

userA997

userA998

Secondary Field Range:

995…998

Rowkey:

KeyValue Heap

Query: Scan scan = new Scan(“userA”), Limit 4

① ①

②

③

④

⑤

Secondary Field Lazy Seek

• Store Secondary Filed Range in HFile’s FileInfo section

• Create fake key to perform lazy seek

33

HFile(hot)

cpuA003server1

cpuA004server1

cpuB003server1

cpuB004server1

Secondary

Field Range:

003…004

Separate data by

boundary: ts = 003

Query: Scan scan = new Scan(cpuA003, cpuA004)

Optimization:

Cold HFile can be

filtered out easily by

Secondary Field

Rowkey ts

cpuA001server1 001

cpuA002server1 002

cpuA003server1 003

cpuA004server1 004

cpuB001server1 001

cpuB002server1 002

cpuB003server1 003

cpuB004server1 004

HFile(cold)

cpuA001server1

cpuA002server1

cpuB001server1

cpuB002server1

Secondary

Field Range:

001…002

Query Optimization: Case 1 - revisit

• Scenario: Monitoring, e.g. OpenTSDB

• Rowkey: MetricName + ts(Secondary Field) + postfix(tags)

Conclusion 03

Conclusion

• A new approach to separate hot-cold data was introduced

• A new Secondary Field Slicer was used to decide layer boundaries
besides timestamp

• Layered compaction was used to separate data to different layer

• Heterogeneous storage was used to balance cost and performance

• New technology like Prefix Bloom Filter and Secondary Field Range
Lazy Seek was used to do auto query optimization

• Production test shows that our approach can lower the query RT by
50% and decrease the storage usage by 25%

We are hiring!

• If you are interested in or familiar

with Hadoop ecosystem or any

other No-SQL database

• If you are eager to accept challenge

of building high concurrency, low

latency and flexible system

FAQ

