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Backgroud

 100k running vehicles online

 send 2 packages per minute every vehicle.

 data space
 the origin package size is 1KB.
 parsed package size is about 7KB.
 one vehicle will produce 20mb data per day.
 2TB data  were generated per day.
 2.9 billion rows need to write to HBase every day.

 concurrency
 3.3k persistent tps
 100k persistent connections
 3.3MB origin data needs to parse per second
 23.1MB parsed data needs to storage in HBase per second



hosted by



hosted by

Challenges 

 Small team

 Limited funds, machines, 

 Short deadline

 System integration

 How to handle the huge amount of vehicle data

 Demands are very foggy.
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Decisions

 Language

 Message queue

 Database

 Develop flow
 Micro service
 Monolithic service

 Deploy and maintain
 Cloud
 Native data center
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Language

 C/C++
 High performance
 Hard to integrate
 Long development time

 Java
 High performance
 Rich third part packages
 Easy to integrate with big data system, i.e. Hadoop, HBase, 

spark

 Python
 Sprint development
 Rich third part packages
 Performance issue with multi thread

 Golang
 Easy to write multi thread program
 There is no Golang developer in our team
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Message

 Redis
 High performance 
 High memory requirement
 Hard to scale

 Celery
 More fit for distribution task
 Easy to develop with python
 Redis or rabbitmq as it’s backend

 Kafka
 Write to disk first to ensure the message security
 Support consumer group
 Auto balance
 Enough performance for our system
 Easy to scale

 Rabbitmq
 Classic message queue
 Performance 
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Database

 MySql
 Relational database
 Fit for storage static information
 ORM support

 MongoDB
 Document based 
 ORM support
 Hard to maintain and scale

 Hbase
 Column database
 High write performance
 Easy to handle TB 
 Easy to scale

 OpenTSDB
 Time series database
 Based on HBase
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 Monolithic service 
 Easy to develop when system is not very complicate
 Acceleration for development
 Build the basic system due the the foggy demands

 Micro service
 Easy to scale in a complicate system
 Rapid iteration
 More developers requirement
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Develop flow
Dependences on central server. 

 Dependences on central server. 
 Easy to setup on one server
 Single point failure risk
 Confliction over multi 

developers



hosted by

Develop flow 

 Dependences on individual docker engine.
 Easy to setup with docker-compose
 No single point risk
 High memory develop machine requirement(starting from 

32GB)
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Deploy and maintain

 Cloud
 Easy setup
 Low cost with small scale
 Fast deployment
 No employees

 Native data center
 Hard setup
 Expensive cost with small scale
 Professional employee to maintain our data center
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Deploy and maintain

 Deploy system with kubernetes
 Easy to management
 Rapid scale 
 Compute and storage split separation

 Deploy basic component with cloud service
 Fast deploy
 Careless
 Easy to get high available service
 No employees
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 Individual develop environment with docker and docker-
compose.

 Deploy system with kubernetes to reduce the operation cost.

 Develop with pure python code.

 Just build the basic system, another demands delay to second 
phase development.
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The System Architecture
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The System Architecture
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System maintain

 Application scale
 Application scale with kubernetes
 Basic component with cloud service

 CI/CD
 CI with jenkins
 CD with jenkins and kubernetes

 Data Backup
 Mysql backup
 Hbase backup
 Message backup
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Why HBase?

 High write performance

 Quick response for query

 Easy to scale

 SQL support with phoenix

 Aliyun provide HBase SAAS
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Connect to HBase cluster with python

 Provide native java API

 Connect HBase with thrift 

 Happybase provide pythonic API

 SQL support with phoenix
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challenges with HBase

 Row key design
 Hash prefix + timestamp

 Second index
 Import phoenix support
 Insert index manually

 Table design
 Short column name
 Carefully design the table with demands (i.e. the mileage 

of every single vehicle)

 Complex query is very slow.
 Create index
 Export some results to HDFS or MySql (kylin?)
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Hbase Cluster
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Data Backup Approach
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Pain point

 Complex query with HBase API still very slow

 Phoenix needs create index to the query speed

 Phoenix query still very slow if there is no index in HBase

 Complex query needs big size of index in HBase

 The queryserver between python and phoenixdb is very weak
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Conculsion

 Introduced the background of monitoring system

 Our decisions of the system

 Why we choose HBase as our main database

 How we deploy and maintain the system

 Introduced the practice of HBase in the system
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Prospects

 Rewrite high performance component with golang.

 Split the monolithic system into micro service when the
system becomes complex

 Data analysis
 Fault diagnosis
 Predict the vehicle status

 Data compression

 Opentsdb

 Combine the elasticsearch and Hbase in our application.



hosted by

Thanks


