
hosted by

颜禹 Yan Yu

The Application of HBase in New
Energy Vehicle Monitoring System

博尼施科技 Burnish Technology Co. Ltd

hosted by

1. Background

2. Challenges and Decisions

3. System architecture

4. Why HBase

5. Challenges with HBase

6. Data backup in HBase

7. Conclusion

8. Prospect

content

hosted by

Backgroud

 100k running vehicles online

 send 2 packages per minute every vehicle.

 data space
 the origin package size is 1KB.
 parsed package size is about 7KB.
 one vehicle will produce 20mb data per day.
 2TB data were generated per day.
 2.9 billion rows need to write to HBase every day.

 concurrency
 3.3k persistent tps
 100k persistent connections
 3.3MB origin data needs to parse per second
 23.1MB parsed data needs to storage in HBase per second

hosted by

hosted by

Challenges

 Small team

 Limited funds, machines,

 Short deadline

 System integration

 How to handle the huge amount of vehicle data

 Demands are very foggy.

hosted by

Decisions

 Language

 Message queue

 Database

 Develop flow
 Micro service
 Monolithic service

 Deploy and maintain
 Cloud
 Native data center

hosted by

Language

 C/C++
 High performance
 Hard to integrate
 Long development time

 Java
 High performance
 Rich third part packages
 Easy to integrate with big data system, i.e. Hadoop, HBase,

spark

 Python
 Sprint development
 Rich third part packages
 Performance issue with multi thread

 Golang
 Easy to write multi thread program
 There is no Golang developer in our team

hosted by

Message

 Redis
 High performance
 High memory requirement
 Hard to scale

 Celery
 More fit for distribution task
 Easy to develop with python
 Redis or rabbitmq as it’s backend

 Kafka
 Write to disk first to ensure the message security
 Support consumer group
 Auto balance
 Enough performance for our system
 Easy to scale

 Rabbitmq
 Classic message queue
 Performance

hosted by

Database

 MySql
 Relational database
 Fit for storage static information
 ORM support

 MongoDB
 Document based
 ORM support
 Hard to maintain and scale

 Hbase
 Column database
 High write performance
 Easy to handle TB
 Easy to scale

 OpenTSDB
 Time series database
 Based on HBase

hosted byMonolithic service vs micro
service

 Monolithic service
 Easy to develop when system is not very complicate
 Acceleration for development
 Build the basic system due the the foggy demands

 Micro service
 Easy to scale in a complicate system
 Rapid iteration
 More developers requirement

hosted by

Develop flow
Dependences on central server.

 Dependences on central server.
 Easy to setup on one server
 Single point failure risk
 Confliction over multi

developers

hosted by

Develop flow

 Dependences on individual docker engine.
 Easy to setup with docker-compose
 No single point risk
 High memory develop machine requirement(starting from

32GB)

hosted by

Deploy and maintain

 Cloud
 Easy setup
 Low cost with small scale
 Fast deployment
 No employees

 Native data center
 Hard setup
 Expensive cost with small scale
 Professional employee to maintain our data center

hosted by

Deploy and maintain

 Deploy system with kubernetes
 Easy to management
 Rapid scale
 Compute and storage split separation

 Deploy basic component with cloud service
 Fast deploy
 Careless
 Easy to get high available service
 No employees

hosted byHow a small team hold a high performance
system.

 Individual develop environment with docker and docker-
compose.

 Deploy system with kubernetes to reduce the operation cost.

 Develop with pure python code.

 Just build the basic system, another demands delay to second
phase development.

hosted by

The System Architecture

hosted by

The System Architecture

hosted by

System maintain

 Application scale
 Application scale with kubernetes
 Basic component with cloud service

 CI/CD
 CI with jenkins
 CD with jenkins and kubernetes

 Data Backup
 Mysql backup
 Hbase backup
 Message backup

hosted by

Why HBase?

 High write performance

 Quick response for query

 Easy to scale

 SQL support with phoenix

 Aliyun provide HBase SAAS

hosted by

Connect to HBase cluster with python

 Provide native java API

 Connect HBase with thrift

 Happybase provide pythonic API

 SQL support with phoenix

hosted by

challenges with HBase

 Row key design
 Hash prefix + timestamp

 Second index
 Import phoenix support
 Insert index manually

 Table design
 Short column name
 Carefully design the table with demands (i.e. the mileage

of every single vehicle)

 Complex query is very slow.
 Create index
 Export some results to HDFS or MySql (kylin?)

hosted by

Hbase Cluster

hosted by

Data Backup Approach

hosted by

hosted by

Pain point

 Complex query with HBase API still very slow

 Phoenix needs create index to the query speed

 Phoenix query still very slow if there is no index in HBase

 Complex query needs big size of index in HBase

 The queryserver between python and phoenixdb is very weak

hosted by

Conculsion

 Introduced the background of monitoring system

 Our decisions of the system

 Why we choose HBase as our main database

 How we deploy and maintain the system

 Introduced the practice of HBase in the system

hosted by

Prospects

 Rewrite high performance component with golang.

 Split the monolithic system into micro service when the
system becomes complex

 Data analysis
 Fault diagnosis
 Predict the vehicle status

 Data compression

 Opentsdb

 Combine the elasticsearch and Hbase in our application.

hosted by

Thanks

