iBATIS 3 - Schema Migration System

User Guide

= NOTE: This guide is not about migrating from older versions of iBATIS. It is a manual about a
tool that will change the way you manage changes to your database.

iBATIS 3 Migrations

Introduction

Evolving databases has been one of the major challenges for software development. Often times,
regardless of our software development methodology, the database follows a different change
management process. Despite our best efforts, few tools and practices have been able to change that.
The tools of the past have been GUI centric, proprietary for a particular database and/or carried a steep
license cost. Yet, at the end of the day they suffered from the same challenges.

Recently, a few tools arrived and changed all of that. They did so by embracing simplicity and a few
simple rules for database evolution to follow. A couple of good examples are Rails Migrations and
dbdeploy. Both tools are similar in purpose, but quite different in implementation. The iBATIS Schema
Migration System draws from both and seeks to be the best migration tool of its kind.

To achieve a good database change management practice, we need to identify a few key goals.
Thus, the iBATIS Schema Migration System (or iBATIS Migrations for short) seeks to:

* Work with any database, new or existing

* Leverage the source control system (e.g. Subversion)

* Enable concurrent developers or teams to work independently

* Allow conflicts very visible and easily manageable

¢ Allow for forward and backward migration (evolve, devolve respectively)

* Make the current status of the database easily accessible and comprehensible
* Enable migrations despite access privileges or bureaucracy

* Work with any methodology

* Encourages good, consistent practices

Installation is simply a matter of unzipping the package to a directory of your choosing. There are

generally two ways to work with this tool:

* Unzip it to a central location. Add MIGRATIONS_HOME to your environment variables, and add
MIGRATIONS_HOME to your path. This is a common option, popular among similar tools like
Ant or Maven.

* Unzipitinto a directory in your workspace for a project that you’re currently working on, thus
keeping all of the dependencies and the tool version isolated within the project. It's a small
framework, and this option has the advantage of portability and zero setup for developers new
to the project.

8-Aug-09 2

What’s Included?

The iBATIS Migrations package is small and simple. The following is the contents of the unzipped
package:

./1lib/ibatis-3-core-3.0.0.188.jar
./migrate
.migrate.cmd

The single iBATIS JAR file is the only dependency that iBATIS Migrations has. The two script files do the
same thing, but as you can see, one is for *nix shells and the other is for Windows (Note: cygwin users
should still call the .cmd version).

The ‘migrate’ Command
The entire Migrations system can be accessed through this one simple command. You can access the
built-in help by typing: migrate --help

Calling the migrate command with no options or invalid options also produces the help message. Here’s
the output of the help command:

Usage: migrate command [parameter] [--path=<directory>] [--env=<environment>]
--path=<directory> Path to repository. Default current working directory.
--env=<environment> Environment to configure. Default environment is 'development'.
--force Forces script to continue even if SQL errors are encountered.
--help Displays this usage message.
--trace Shows additional error details (if any).
Commands :

init Creates (if necessary) and initializes a migration path.

bootstrap Runs the bootstrap SQL script (see scripts/bootstrap.sgl for more).

new <description> Creates a new migration with the provided description.

up Run all unapplied migrations.

down Undoes the last migration applied to the database.

version <version> Migrates the database up or down to the specified version.

pending Force executes pending migrations out of order (not recommended) .

status Prints the changelog from the database if the changelog table exists.

script <vl> <v2> Generates a delta migration script from version vl to v2 (undo if v1 > v2).

We’'ll go through each of these commands in detail, but first, let’s talk about lifecycle.

The iBATIS Migrations Lifecycle

Database change management is difficult at the best of times, so to make the situation better, it’s
important to have a good database evolution strategy. That employed by iBATIS Migrations targets a
few key goals:

* Consistent — The schema should be predictable on every machine it’s created on.
* Repeatable — The schema can be destroyed and recreated a predictable way.

* Reversible — Changes should be able to be rolled back, or undone.

iBATIS 3 Migrations

Versioned — The version of the schema should be identifiable (via query or tool).
Auditable — The schema evolution should be auditable and the changes to it logged.
Automated — The evolution (or devolution) of the schema should be fully automated.
Serial — The evolution in the database should never branch or evolve conditionally.

Immutable Changes — No past applied alter or evolution of the database should be modified,
instead a new change should be created.

Concurrently Modifiable — The schema should be safely modifiable by multiple people or teams
in a way that encourages teamwork, communication and easy identification of conflicts, without
depending on text comparisons (diff) or any particular source control feature (conflicts), but
should work very well with source control systems.

Thus, the lifecycle of a schema managed with iBATIS Migrations is as follows:

1.

4.

Initialize Repository
Bootstrap database schema
Create a new migration (or many migrations)

Apply migrations

Optional steps include:

Revert migrations if necessary to resolve conflicts
Apply pending migrations out of order if it’s safe to do so
Generate migration scripts to be run “offline” in environments that are beyond your control

Get the status of the system at any time

The following command discussions will provide more detail about how this lifecycle works.

The init command initializes a new ‘migration path’, also called a ‘repository’ (of migration scripts).

Regardless of whether your working with a new database or an existing one, you’ll run init to create the

workspace in which you’ll place everything you need to manage database change. Running this

command will create the directory specified by the --path option (which is the current working directory
by default).

Here’s an example of running the init command:

/$ migrate --path=/home/cbegin/testdb init

8-Aug-09 4

iBATIS 3 Migrations

If | was already in the /home/cbegin/testdb directory, | could simply run:

/home/cbegin/testdb$ migrate init
When the command is completed, the directory will contain the following sub-directories:
.Jdrivers

Place your JDBC driver .jar or .zip files in this directory. Upon running a migration, the drivers will be

dynamically loaded.
.Jenvironments

In the environments folder you will find .properties files that represent your database instances. By
default a development.properties file is created for you to configure your development time database
properties. You can also create test.properties and production.properties files. Details about the
properties themselves follow later in this document. The environment can be specified when running a
migration by using the --env=<environment> option (without the path or ".properties" part).

The default environment is "development". The properties file is self documented, but here it is for
reference:

JDBC connection properties.
driver=com.mysqgl.jdbc.Driver
url=jdbc:mysqgl://localhost:3306/blog
username=root

password=root

Name of the table that tracks changes to the database
changelog=CHANGELOG

If set to true, each statement is isolated

in its own transaction. Otherwise the entire
script is executed in one transaction.

auto commit=false

This controls how statements are delimited.
By default statements are delimited by an
end of line semicolon. Some databases may
(e.g. MS SQL Server) may require a full line

e

delimiter such as GO.
delimiter=;
full line delimiter=false

This ignores the line delimiters and
simply sends the entire script at once.

8-Aug-09 5

iBATIS 3 Migrations

Use with JDBC drivers that can accept large
blocks of delimited text at once.
send full script=false

.[scripts

This directory contains your migration SQL files. These are the files that contain your DDL to both
upgrade and downgrade your database structure. By default, the directory will contain the script to
create the changelog table, plus one empty example migration script. To create a new migration script,
use the "new" command. To run all pending migrations, use the "up" command. To undo the last
migration applied, use the "down" command etc.

If you’re working from an existing database, you need to start from a known state. There’s no point in
trying to rewind time and shoehorn your existing database into a series of migration scripts. It's more
practical to just accept the current state of your database schema and identify this as the starting point.
The bootstrap script and command exist for this reason. In the scripts directory you'll find
bootstrap.sql. You can put your existing DDL script in this file. If you don’t have a DDL script, you can
export your existing database schema and put it in the bootstrap file. You’ll want to clean it up so that it
doesn’t contain anything specific to any one environment, but otherwise almost any script should work.
Watch out for DDL that contains conditional elements or branching logic that could generate multiple
schemas. While this is sometimes necessary, it’s a really good idea to try to eliminate this aspect of your
database schema (put such conditional and branching logic in your code or stored procedures instead).
If you have multiple DDL files, you’ll have to merge them into the single bootstrap file. But worry not,
it’s the last time you’ll ever modify it. One of the rules above was immutable change scripts... the
bootstrap is included in that rule.

=> Note: The bootstrap.sqglis a plain text file and is not a valid “migration” that you'll learn about later.
It's meant to be similar to the scripts you probably already use. Therefore you cannot rollback the
bootstrap file, nor is it tracked in the audit logs... without exception, whatever you put in the bootstrap
file cannot leverage the benefits of the other migration commands. But we have to start somewhere,

and it’s best to look forward.

To run the bootstrap file, you simply call the bootstrap command. You do this once to initialize your
database into a known working state. From then on, you’ll use migration scripts to evolve the database

schema.
The bootstrap command has no parameters. So running it is as simple as:
/home/cbegin/testdb$ migrate bootstrap

As usual, you can use the --path option to specify the repository path, otherwise the current working
directory is assumed to be the root of your migration repository (aka migration path).

8-Aug-09 6

iBATIS 3 Migrations

If there are environment specific elements in your bootstrap script, you’ll learn later that you can use
properties to deal with those.

Now that you’ve initialized your repository and bootstrapped your existing database schema, you're
ready to start leveraging the power of iBATIS Migrations!

iBATIS Migrations are simple SQL script files (*.sql) that live in the scripts directory and follow a very
strict convention. Since this convention is so important, we don’t want to leave it up to humans to try to
get it right every time... so we let automation do what it does best, and keep things consistent.

The new command generates the skeleton of a migration script that you can then simply fill in. The

command is simply run as follows:

/home/cbegin/testdb$ migrate new “create blog table”

The parameter that the new command takes is a comment describing the migration that you're
creating. You don’t need quotes around it, but it helps keep the command readable.

When the command is run, it will create a file named something like the following:

20090807221754_create_blog table.sql

This format is very important (which is why it’s generated). The number at the beginning plays three
roles. Fist, it's a practically unique identifier, meaning it’s highly unlikely that two people will generate
the same one at the same time (it’s not a big deal to resolve if it does happen). Second, it’s a
timestamp, indicating when the migration was created. Third, it is an ordinal index, formatted in a way
that will keep the migrations sorted in the order in which they were created. The remainder of the
filename is the comment you specified in the parameter. Finally, the suffix is .sql, indicating the file type
that most editors will recognize.

The contents of the migration script also follows a specific and required pattern. Here’s the contents of
the file we just generated:

--// create blog table
-—- Migration SQL that makes the change goes here.

--//QUNDO
-- SQL to undo the change goes here.

8-Aug-09 7

iBATIS 3 Migrations

Notice that your comment once again appears at the top of the file. You can add more comments
beneath it and throughout the script if you like.

The section immediately following that comment is where you would put your DDL commands to create
the blog table.

Then notice the --//@UNDO section. This section demarcates the script file sections, splitting it into two
distinct parts. Only the commands above the undo section will be executed when upgrading a database.
Everything beneath the undo section will be run when downgrading the database. Both sections are
kept in the same file for simplicity and clarity. The following is a filled in script:

--// create blog table

CREATE TABLE BLOG (
ID INT,
NAME VARCHAR (255),
PRIMARY KEY (ID)

) ;

--//QUNDO

DROP TABLE BLOG;

Notice that the commands are terminated by a colon. This is also important, and you will receive a
warning and likely a failure if you don’t terminate the SQL statements with a colon.

So how do we run this script? Well, first it’s probably important to understand the current state of the
database.

The status command will report the current state of the database. The status command takes no
parameters and operates on the current working directory or that specified by the --path option (as with
all other commands).

/home/cbegin/testdb$ migrate status

ID Applied At Description
20090802210445 ...pending... create changelog
20090804225328 ...pending... create blog table

8-Aug-09 8

iBATIS 3 Migrations

Since we’ve never run a migration, the status of all of the existing migration scripts is pending, including
the changelog table itself, which is where more detailed status logs are kept. Once we run the up
command (discussed next), the status will report something like the following:

/home/cbegin/testdb$ migrate status
ID Applied At Description

20090802210445 2009-08-04 22:51:16 create changelog
20090804225328 2009-08-04 22:51:16 create blog table

Thanks to our identifier format, things are in order, and we can see when a migration script was created,
as well as when it was applied. The comment helps us read a high level overview of the evolution of this
database. As we add migrations this status log will grow. For example:

/home/cbegin/testdb$ migrate status
ID Applied At Description

20090802210445 2009-08-04 22:51:16 create changelog
20090804225207 2009-08-04 22:52:51 create author table
20090804225328 2009-08-04 22:54:33 create blog table
20090804225333 2009-08-04 22:54:33 create post table

You can also get this information from the changelog table by querying it directly in the database. Of
course, you won't see any “pending” items, as those are only known to the migration repository until
they’re applied to the database

As discussed above, the migration scripts have both a do and an undo section in them. It’s therefore
possible to evolve and devolve a database to simplify development and concurrent evolution of the
database across development teams. The up command runs the do section of all pending migrations in
order, one after the other. The down command runs the undo section of the last applied migration
only. These commands behave this way because you’re most likely to always want the latest revision of
the database schema, and if you ever need to roll back, you’ll probably only want to do so for the last
few versions —and do so in a controlled manner.

Here’s a more visual example of how the up and down commands work. We’'ll use the status command
in between to see the effect:

8-Aug-09 9

/home/cbegin/testdb$ migrate status

ID Applied At Description

20090802210445
20090804225207
20090804225328
20090804225333

.pending. ..
.pending. ..
.pending. ..
.pending. ..

create changelog
create author table
create blog table
create post table

/home/cbegin/testdb$ migrate
/home/cbegin/testdb$ migrate
ID Applied At

up
status
Description

20090802210445
20090804225207
20090804225328
20090804225333

2009-08-04 22:
2009-08-04 22:
2009-08-04 22:
2009-08-04 22:

create changelog
create author table
create blog table
create post table

/home/cbegin/testdb$ migrate
/home/cbegin/testdb$ migrate
ID Applied At

20090802210445
20090804225207
20090804225328

2009-08-04 22:
2009-08-04 22:
2009-08-04 22:

create changelog
create author table

create blog table

20090804225333 ...pending. .. create post table

There really isn’t much more to the up and down commands than that. They let you navigate the
evolution of the database schema forward and backward. As usual, they operate on the repository in
the current working directory, or the one specified in the optiona --path option.

version

The up and down commands are pretty prescriptive in how they work. The up command evolves all the
way up, and down only devolves one step down. Sometimes that might be limiting, so the version
command exists to allow you to migrate the schema to any specific version of the database you like.
You simply call it, specifying the version you’d like to end up at, and the migrations system figures out
whether it has to go up or down, and which migrations it needs to run. Here’s an example.

/home/cbegin/testdb$ migrate status

ID Applied At Description
20090802210445 .pending. .. create changelog
20090804225207 .pending. .. create author table
20090804225328 .pending. .. create blog table
20090804225333 .pending. .. create post table

iBATIS 3 Migrations

/home/cbegin/testdb$ migrate version 20090804225207
/home/cbegin/testdb$ migrate status
ID Applied At Description

20090802210445 2009-08-04 22:51:17 create changelog
20090804225207 2009-08-04 22:51:17 create author table
20090804225328 ...pending... create blog table
20090804225333 ...pending... create post table

/home/cbegin/testdb$ migrate up
/home/cbegin/testdb$ migrate status
ID Applied At Description

20090802210445 2009-08-04 22:51:17 create changelog
20090804225207 2009-08-04 22:51:17 create author table
20090804225328 2009-08-04 22:54:32 create blog table
20090804225333 2009-08-04 22:54:32 create post table

/home/cbegin/testdb$ migrate version 20090804225207
/home/cbegin/testdb$ migrate status
ID Applied At Description

20090802210445 2009-08-04 22:51:17 create changelog
20090804225207 2009-08-04 22:51:17 create author table
20090804225328 ...pending... create blog table
20090804225333 ...pending... create post table

The version command is a powerful utility for moving to a specific revision of the database.

pending

Sometimes when working with a team of people, or with multiple teams of people, it’s possible that
more than one change to the database can be made at a time. Past solutions to this problem have been
to centralize the management or responsibility for change to one person or team. But this creates
bureaucracy and slows down the development process. It also hurts automation and continuous
integration. Therefore we need a better approach. iBATIS Migrations simply allows this situation to
occur, but makes it very obvious that it has happened. Then the teams can review the situation,
downgrade their schemas and re-run the migrations in order, and re-assess the situation. It allows
teams to work autonomously, while encouraging communication, team work and good source control
practices. When someone creates migration in another workspace before you, but commits to the
source control system later than you, you’ll end up with an orphaned pending migration. They’re easy
to spot with the status command:

8-Aug-09 11

/home/cbegin/testdb$ migrate status
ID Applied At Description

20090802210445 2009-08-04 22:51:17 create changelog
20090804225207 2009-08-04 22:51:17 create author table
20090804225328 ...pending... create blog table
20090804225333 2009-08-04 22:51:17 create post table

iBATIS Migrations will not run this orphaned migration simply by running the up command. Instead,
you’d have to downgrade to the point just before the orphaned migration, then run up to run all of the
migrations in order. This is the safest and recommended approach.

However, if you and the other team review the change, and decide it's completely isolated and not a
conflicting change, then there is a way to run the pending migration(s) out of order. The pending
command does just that. It runs all pending migrations regardless of their order or position in the status
log. So if we were to run the pending command given the situation above, the results would be as we

expect:

/home/cbegin/testdb$ migrate pending
/home/cbegin/testdb$ migrate status
ID Applied At Description

20090802210445 2009-08-04 22:51:17 create changelog
20090804225207 2009-08-04 22:51:17 create author table
20090804225328 2009-08-05 24:55:23 create blog table
20090804225333 2009-08-04 22:51:17 create post table

Even after the fact, you’ll be able to identify any migrations run in this way, as the applied date will give
them away. An out-of-order applied date is clear indication that a migration was run out of order. No
surprises!

Some commands like pending and down are highly unlikely to ever be needed in production. By the
time you promote migrations to production, you’ve hopefully decided on your final schema and tested
and approved the schema for release. While they won’t be used in production, they are highly valuable
during the development process. Once you get used to the idea, you won’t be able to work without it

again.

While we developers wish we had unlimited access to every environment, the unfortunate truth is that

we don’t. Often it’s the very production environment that we’re targeting that we don’t have access to.
Someone else, a DBA or Change Management team will need to apply any changes. However, we don’t
want this to be an excuse to not use a good, automated change management tool.

iBATIS 3 Migrations

iBATIS Migrations provides the script command to generate a script that can migrate a schema from one
version to another. As mentioned above, this will likely always be in an upward direction, but the script
command does also support generating undo scripts (just in case you’re so unfortunate that you don’t
even have access to central development databases!).

The script command is quite simple. It takes two version numbers as parameters. Think of it as
generating a script to apply all of the identified versions (inclusive) in the order specified. For example,
given the following:

/home/cbegin/testdb$ migrate status
ID Applied At Description

20090802210445 2009-08-04 22:51:17 create changelog
20090804225207 2009-08-04 22:51:17 create author table
20090804225328 2009-08-05 24:55:23 create blog table
20090804225333 2009-08-04 22:51:17 create post table

If we need to generate a “do” script to apply the two highlighted versions above, we’d run the following

command:

/home/cbegin/testdb$ migrate script 20090804225328 20090804225333 > do.sql

The script command outputs to stdout, so you can let it print to the console, or pipe it to a file or
command.

To generate the corresponding “undo” script, simply specify the version numbers in the opposite order:

/home/cbegin/testdb$ migrate script 20090804225333 20090804225328 > undo.sql

8-Aug-09 13

