
Apache Spark at Viadeo
Paris Hadoop User Group - 2014/04/09

Viadeo

@EugenCepoi
Open source author: Genson

Specialized in web scale systems and algorithmics

Apache Spark
- http://spark.incubator.apache.org/

- http://vision.cloudera.com/mapreduce-spark/

- A fast & easy to use engine for distributed
computing in Scala (Java & Python support)

http://spark.incubator.apache.org/
http://vision.cloudera.com/mapreduce-spark/

Spark ecosystem

Tachyon

Why we like Spark
- Scala, functional languages are a great match for typical operations in
distributed systems
- Easy to test, most of your code is standard Scala code
- Has already a stack for doing streaming, ML, graph computations
- Allows you to store data in RAM and even without it is fast!
- Provides a collect/broadcast mechanism allowing to fetch all the data on the
“Driver” node or to send local data to every worker
- Has an interactive shell (a la Scala), useful to analyse your data and to debug

And much more...

At the core of Spark...
The Resilient Distributed Dataset - RDD
- Abstraction over partitioned data

- RDDs are read only and can be built only from a stable storage or by transformations on
other RDDs

parentHadoopRDD

from HDFS

MappedRDD

map(closure)

FilteredRDD

filter(closure)

parent

At the core of Spark...

Spark Driver

Worker

RAM

Data

Worker

RAM

Data

tasks and

results
Spark Context

Scheduler

Transformations
lineage

tasks and
results

Spark Driver
 - Define & launch operations on RDDs
 - Keeps track of RDD lineage allowing
to recover lost partitions
 - Use the RDD DAG in the Scheduler to
define the stages and tasks to be
executed

Workers
 - Read/Transform/Write RDD partitions
 - Need to communicate with other
workers to share their cache and shuffle
data

Beginning with Spark
- Started to POC with Spark 0.8 summer 2013

- Standalone cluster on AWS in our VPC
=> hostname resolution problems
=> additionnal cost to get the data on S3 and push back
=> network performance issues

- Finally we chose to reuse our on-premise hadoop cluster

Running Spark on Mesos
- Cluster manager providing resources (CPU & RAM) isolation and
sharing them between applications
- Strong isolation with Linux container groups
- Flexible resource request model:

=> Mesos makes resource offers

=> the framework decides to accept/reject

=> the framework tells what task to run and what amount of the resources will be
used

- We can run other frameworks (ex: our services platform)

Deploy & run jobs from
dedicated server

Hadoop & HDFS on same nodes
with Mesos/Spark.
The Mesos slave fetches Spark
framework and starts the executor

Some repetitive tasks
- Repeating the creation of a new project with packaging, scripts, config,
etc. is boring

- Most jobs take as input Avro files from HDFS (Sqoop export, Event
logs) and output Avro

- They often have common structure and testing utilities

- Want to get latest data or all data in a time range

Creating Sparky
- To improve our productivity we created Sparky, a thin
library around Spark

=> read/write Avro from HDFS, work with partitioned data by time, testing,
benchmarking ML utilities (ROC & AUC)

=> a job structure allowing to standardize jobs design and add some abstractions
around SparkContext and job configuration - could allow us to have shared RDD (Job
Server from Ooyala?)

 => a maven archetype to generate new spark projects ready for production (debian
packaging, scripts, configuration and job template)

Problems we had
- “No more space left…” => spark.local.dir pointing to /tmp … oops

- NotSerializableException

=> closures referencing variables outside the function scope

=> classes not implementing Serializable, Enable Kryo serialization

- Kryo throwing ArrayOutOfBoundsException for large objects, increase spark.
kryoserializer.buffer.mb

- Loosing still in use broadcasted data due to spark.cleaner.ttl

Problems we had
- Reading Avro GenericRecord instead of SpecificRecord

=> Avro is not finding the generated classes in your application

=> the spark assembly with hadoop includes avro, it is loaded by a different
classloader than the one used for the application

=> tweaking with Avro API to use the task classloader

=> alternative solution: repackage Spark without avro and include avro in your
application fat jar

Things we must do
- Use a scheduler such as Chronos, allowing to handle inter
job dependencies

- Migrate Hadoop jobs to use Mesos or YARN (and use the
same cluster manager for Spark jobs)

- Automatic job output validation features
ex: check output size is close to expected

Systems we built with Spark

Job offer click prediction (in emails)

Members segmentation & targeting

Job offer click prediction
- Increase click rates on job offers in our career mail
- Current solution is using Solr and searches best matches
in textual content between members and job offers
- POC a click prediction engine using ML algorithms and
Spark
- Achieving ~5-7% click increase in our career mail

Algorithm overview

Job Titles clustering

Software
engineer

Software
developer

Software
engineer

Software
developer

Project manager Project
manager

Job Position Transition Graph

Software
engineer

Software
architect

Project
Manager

Compute input variables:
- Distance between Member
attributes and Job offer attributes
- Job offer click count, etc Linear regression to score

offers:
 x = input variables
 y = boolean, has clicked

model:

Spark/HDFS/HBase at the core of our system

- The prediction engine is made of several Spark jobs working together

- The job computing the predictions does not have algorithmic logic:

=> fetches past predictions/clicks from HBase

=> uses an algorithm implementation and trains it with the data

=> stores the predictions back to HBase

- Our algorithms implement a contract (train, predict) and contain all the logic

=> allows us to plug new algorithms in the prediction job

=> and to have a automatic benchmark system to measure algorithms performance (really nice!
:))

Spark/HDFS/HBase at the core of our system

The broadcast feature of Spark helped us a lot to share small to medium size
data, by broadcasting it to all workers

Job Titles
clustering

Job Position
Transition Graph

Worker

Worker

Worker

Spark/HDFS/HBase at the core of our system

- We stored only Avro on HDFS, partitioned by date

- We stored only primitive types (int, long, byte) in HBase and designed RowKeys allowing us to do
efficient partial range scans

=> decile#prediction_date#memberId, c:click_target#click_time, targetId

=> the decile was used as sharding key

=> prediction_date and click_target were used to do partial range scans for constructing
benchmark datasets and filter the specific kind of events we wanted to predict (click on the job offer,
click on the company name, etc)

Job offer click prediction platform

HDFS

Job Title
clusters

HBase
Flume

Sqoop

Event Logs

MySQL
exports

R scripts

Click Tracking - prepare click data for
efficient retrieval in benchmark, analytics
and prediction jobs

Clicks

Predictions

Analytics

Benchmark - Automatic benchmark
(ROC & AUC) of algorithms based on
predicted job offers and corresponding
clicks

Click Prediction - learns from past and
predicts clicks using selected algorithm

Algo v1 Algo v2

API exposing
recommended job
offers

Systems we built with Spark

Job offer click prediction (in emails)

Members segmentation & targeting

Member Segmentation
- What is a segment? ex: All male customers older than 30 working in IT

- Our traffic team responsible for doing campaign targeting was using MySQL

- Their queries were taking hours to complete

- Was not industrialized, thus not usable outside the ad targeting scope

- Our goal: build a system that allows to

=> easily express segments

=> compute the segmentation for all our members quickly

=> use it to do targeting in emails, select AB testing target, etc

Infer the input sources and
keep only the attributes we
need (reducing data size)

HDFS

/sqoop/path/Member/importTime/...

/sqoop/path/Position/importTime/...

Prune the data (rows) that
won’t change the result of
the expressions

Segments Definition
now()-Member.BirthDate > 30y

and Position.DepartmentId = [....]

Parse segment definition
using Scala combinators,
validate & broadcast to
all spark workers

Evaluate each
expression (segment)

Segmentation
Job

Members:

 Id: 1
 Name: Lucas
 BirthDate: 1986

Id: 2
Name: Joe
BirthDate: 1970

Members:

 Id: 1
 BirthDate: 1986

Id: 2
BirthDate: 1970

The
segmentation
for each
member

~ 4 min for +60 segments
and all our members!

Compute candidate
campaigns for each member
based on their segmentation

Select the best campaign
for the member based on
the volume sold, campaign
duration, etc

Campaign Definition
Ad, sold volume, price, combination of
segments

Campaign
Targeting Job

The
segmentation
for each
member

Targeted
campaigns per
member

Mailing Jobs
with Scalding

Next steps
- Build inverted indexes for computed segmentation
(ElasticSearch?)

- Expose the indexes to BI for analytics purpose

- Expose the indexes to Viadeo customers allowing them to
create targeted campaigns online

Questions?
Or send them at cepoi.eugen@gmail.com

Thanks :) _

Viadeo Data mining & machine learning team
@EugenCepoi

