Joe Stein

3 BDOSS

Building & Deploying Applications to Apache Mesos

Joe Stein

e Developer, Architect & Technologist
e Founder & Principal Consultant => Big Data Open Source Security LLC - http://stealth.ly

Big Data Open Source Security LLC provides professional services and product solutions for the collection,
storage, transfer, real-time analytics, batch processing and reporting for complex data streams, data sets and
distributed systems. BDOSS is all about the "glue" and helping companies to not only figure out what Big Data
Infrastructure Components to use but also how to change their existing (or build new) systems to work with
them.

e Apache Kafka Committer & PMC member
e Blog & Podcast - http://allthingshadoop.com
e Twitter @allthingshadoop

http://stealth.ly
http://allthingshadoop.com
https://twitter.com/allthingshadoop

Overview

Quick intro to Mesos
Marathon Framework
Aurora Framework

®
®
®
e Custom Framework

smagenarator.net

Origins

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center http://
static.usenix.org/event/nsdi11/tech/full_papers/Hindman_new.pdf

Datacenter Management with Apache Mesos https://www.youtube.com/watch?
v=YB1VWOLKzJ4

Omega: flexible, scalable schedulers for large compute clusters hitp://
eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf

2011 GAFS Omega John Wilkes https://www.youtube.com/watch?
v=0ZFMIO98Jkc&feature=youtu.be

http://static.usenix.org/event/nsdi11/tech/full_papers/Hindman_new.pdf
https://www.youtube.com/watch?v=YB1VW0LKzJ4
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://www.youtube.com/watch?v=0ZFMlO98Jkc&feature=youtu.be

Life without Apache Mesos

Static Partitioning

Static Partitioning IS Bad

hard to utilize machines
(i.,e., X GB RAM and Y CPUs)

Static Partitioning does NOT scale

hard to scale elastically
(to take advantage of statistical multiplexing)

Faillures

=== Downtime

hard to deal with failures

Static Partitioning

Operating System === Datacenter

Mesos => data center “kernel”

Apache Mesos

e Scalability to 10,000s of nodes

e Fault-tolerant replicated master and slaves using ZooKeeper

e Support for Docker containers

e Native isolation between tasks with Linux Containers

e Multi-resource scheduling (memory, CPU, disk, and ports)

e Java, Python and C++ APIs for developing new parallel applications

e Web Ul for viewing cluster state

Hadoop MPI ZooKeeper
scheduler scheduler quorum
o ": _____ | A) = ::‘A. "
Mesos A_| : \ 1 Standby
master .___master master

Mesos slave| | Mesos slave

Hadoop

task |

MPI

executor executor

task |

Mesos slave

Hadoop
executor

MPI
executor

task

task

Framework 1

Job 1 Job 2

Framework 2

Job 1

Job 2

FW Scheduler

FW Scheduler

<s1, 4cpuy, 4qgb, ... > (2

<task1, s1, 2cpu, 1gb, ... >]

<task2, s1, 1cpu, 2gb, ... >
X% -
Allocation Mesos
module master
-
<s1, 4cpu, 4gb, ... > (1 <fw1, task1, 2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >
Slave 1 Slave 2
Executor

Task

Task

Resources & Attributes

The Mesos system has two basic methods to describe the
slaves that comprise a cluster. One of these is managed by the
Mesos master, the other is simply passed onwards to the
frameworks using the cluster.

Attributes

The attributes are simply key value string pairs that Mesos passes along when it sends offers to frameworks.

attributes : attribute (";" attribute)*

attribute : labelString ":" (labelString | ",")+

Resources

The Mesos system can manage 3 different types of resources: scalars, ranges, and sets. These are used to represent
the different resources that a Mesos slave has to offer. For example, a scalar resource type could be used to represent
the amount of memory on a slave. Each resource is identified by a key string.

resources : resource (";" resource)¥
resource : key ":" (scalar | range | set)
key : labelString ("(" resourceRole ")")?

scalar : floatValue

range : "[" rangeValue ("," rangeValue)* "]"
rangeValue : scalar "-" scalar

set : "{" labelString ("," labelString)* "}"
resourceRole : labelString | "*"

labelString : [a-zA-Z0-9_/.-]

floatValue : (intvalue ("." intvalue)?) |

intvalue : [0-9]+

Predefined Uses & Conventions

The Mesos master has a few resources that it pre-defines in how it handles them. At the current time, this list consist of:

e cpu
e mem

e disk
° ports

In particular, a slave without cpu and mem resources will never have its resources advertised to any frameworks. Also, the Master’s
user interface interprets the scalars inmem and disk in terms of MB. |E: the value 15000 is displayed as 14.65GB.

Examples

Here are some examples for configuring the Mesos slaves.

--resources="cpu:24;mem:24576;disk:409600;ports:[21000-24000];disks:{1,2,3,4,5,6,7,8}"

--attributes='dc:1;floor:2;aisle:6;rack:aa;server:15;0s:trusty;jvm:7u68;docker:1.5"

In this case, we have three different types of resources, scalars, a range, and a set. They are called cpu, mem, disk, and the range
type is ports.

e scalar called cpu, with the value 24

e scalar called mem, with the value 24576

e scalar called disk, with the value 409600

e range called ports, with values 21000 through 24000 (inclusive)

e set called disks, with the values 1, 2, etc which we can concatenate later /mnt/disk/{diskNum} and each task can own a
disk

Roles

Total consumable resources per slave, in the form 'name(role):value;name(role):value...". This value can be set to
limit resources per role, or to overstate the number of resources that are available to the slave.
--resources="cpus(*):8; mem(*):15360; disk(*):710534; ports(*):[31000-32000]"
--resources="cpus(prod):8; cpus(stage):2 mem(*):15360; disk(*):710534; ports(*):[31000-32000]"
All * roles will be detected, so you can specify only the resources that are not all roles (*). --resources="cpus(prod):8;

cpus(stage)”

Frameworks bind a specific roles or any. A default roll (instead of *) can also be configured.

Roles can be used to isolate and segregate frameworks.

Marathon o))

https://github.com/mesosphere/marathon
Cluster-wide init and control system for
services in cgroups or docker based on

Apache Mesos

-Mnmmdmuumon

- Task launched via Chronos

https://github.com/mesosphere/marathon

Constraints

Constraints control where apps run to allow optimizing for fault tolerance or locality. Constraints are made up of three parts: a field

name, an operator, and an optional parameter. The field can be the slave hostname or any Mesos slave attribute.

Fields

Hostname field

hostname field matches the slave hostnames, see UNIQUE operator for usage example.

hostname field supports all operators of Marathon.

Attribute field

If the field name is none of the above, it will be treated as a Mesos slave attribute. Mesos slave attribute is a way to tag a slave

node, see mesos-slave --help to learn how to set the attributes.

Unique

UNIQUE tells Marathon to enforce uniqueness of the attribute across all of an app's tasks. For example the following constraint

ensures that there is only one app task running on each host:

via the Marathon gem:

$ marathon start -i sleep -C 'sleep 60' -n 3 --constraint hostname:UNIQUE

via curl:

$ curl -X POST -H "Content-type: application/json" localhost:8080/v1/apps/start -d '{
"id": "sleep-unique",
"cmd": "sleep 60",
"instances": 3,
"constraints"”: [["hostname™, "UNIQUE"]]

Cluster

CLUSTER allows you to run all of your app's tasks on slaves that share a certain attribute.

$ curl -X POST -H "Content-type: application/json" localhost:8080/v1/apps/start -d '{
"id": "sleep-cluster",
"cmd": "sleep 60",
"instances": 3,
"constraints": [["rack_id", "CLUSTER", "rack-1"]]
3!
You can also use this attribute to tie an application to a specific node by using the hostname property:

$ curl -X POST -H "Content-type: application/json" localhost:8080/v1/apps/start -d '{
"id": "sleep-cluster",
"cmd": "sleep 60",
"instances": 3,
"constraints"”: [["hostname", "CLUSTER", "a.specific.node.com"]]

Group By

GROUP_BY can be used to distribute tasks evenly across racks or datacenters for high availability.

via the Marathon gem:

$ marathon start -i sleep -C 'sleep 60' -n 3 --constraint rack_id:GROUP_BY

via curl:

$ curl -X POST -H "Content-type: application/json"” localhost:8080/v1/apps/start -d '{
"id": "sleep-group-by",
"cmd": "sleep 60",
"instances": 3,
"constraints": [["rack_id", "GROUP_BY"]]

Optionally, you can specify a minimum number of groups to try and achieve.

Like

LIKE accepts a regular expression as parameter, and allows you to run your tasks only on the slaves whose field values match the

regular expression.

via the Marathon gem:

$ marathon start -i sleep -C 'sleep 60' -n 3 --constraint rack_id:LIKE:rack-[1-3]

via curl:

$ curl -X POST -H "Content-type: application/json" localhost:8080/v1/apps/start -d '{
"id": "sleep-group-by",
"cmd": "sleep 60",
"instances": 3,
"constraints": [["rack_id", "LIKE", "rack-[1-3]"1]
3

Unlike

Just like LIKE operator, but only run tasks on slaves whose field values don't match the regular expression.

via the Marathon gem:

$ marathon start -i sleep -C 'sleep 60' -n 3 --constraint rack_id:UNLIKE:rack-[7-9]

via curl:

$ curl -X POST -H "Content-type: application/json"” localhost:8080/v1/apps/start -d '{
"id": "sleep-group-by",
"cmd": "sleep 60",
"instances": 3,
"constraints": [["rack_id", "UNLIKE", "rack-[7-9]1"]]

Running in Marathon

TAG=sample

APP=xyz

ID=$TAG-$APP

CMD="./yourScript "$HOST"™ "$PORTO"™ "$PORT1"

JSON=%(printf '{ "id": "%s", "cmd": "%s", "cpus": %s, "mem": %s, "instances":
%s, "uris": ["%s"], "ports": [0,0] , “env”:{ “JAVA OPTS”,"%s"} "$ID" “$CMD"
"0.1" "256" "1" "http://dns/path/yourScriptAndStuff.tgz" “-Xmx 1287)

curl -i -X POST -H "Content-Type: application/json" -d "$JSON" http://localhost:
8080/v2/apps

http://dns/path/some.tgz

yourScript

#think of it as a distributed application launching in the cloud
HOST=$%1

PORTO0=$2

PORT1=$3

#talk to zookeeper or etcd or mesos dns

#call marathon rest api

#spawn another process, they are all in your cgroup =8") woot woot

Persisting Data

Write data outside the sandbox, the other kids will not mind.

o /var/lib/data/<tag>/<app>
Careful about starvation, use the constraints and roles to manage this.
Future improvements htips://issues.apache.org/jira/browse/MESOS-2018 This is a
feature to provide better support for running stateful services on Mesos such as
HDFS (Distributed Filesystem), Cassandra (Distributed Database), or MySQL (Local
Database). Current resource reservations (henceforth called "static" reservations)
are statically determined by the slave operator at slave start time, and individual
frameworks have no authority to reserve resources themselves. Dynamic
reservations allow a framework to dynamically/lazily reserve offered resources, such
that those resources will only be re-offered to the same framework (or other
frameworks with the same role). This is especially useful if the framework's task
stored some state on the slave, and needs a guaranteed set of resources reserved
so that it can re-launch a task on the same slave to recover that state.

https://issues.apache.org/jira/browse/MESOS-2018

Apache Aurora

http://aurora.incubator.apache.org/

Apache Aurora is a service scheduler that runs on top of
Mesos, enabling you to run long-running services that
take advantage of Mesos' scalability, fault-tolerance, and
resource isolation. Apache Aurora is currently part of the

Apache Incubator.

AVAVA
A'AVAvA Apache

wawy AUROR /\

VAVAY

http://aurora.incubator.apache.org/

Thermos

Aurora

Job Objects

name
task
nare
role
cluster
environment
contact
instances

cron_schedule
cron_collision_policy

update_config

constraints
service
max_task_failures
priority

production

health_check_config

container

§5§58888u

uwpdate_config

81

i

Boolean

description

The Task object 10 bind 0 this job. Required.

Job name. (Default: inherited from the task attribute’s name)

Job role account. Required.

Cluster in which this job Is scheduled. Required,

Job ervironment, default devel . Must be one of prod, devel, test or staging<nusber>.

Best email address 10 reach the owner of the job. For production jobs, this is usually a team maling kst.

Number of instances (sometimes referred 10 as repicas or shards) of the task to create. (Default: 1)

Cron schedule in cron format. May only be used with non-service jobs. See Cron Jobs for more information. Default: None (not
a cron job.)

Policy to use when a cron job Is triggered while a previous run is still active. KILLEXISTING KW the previous run, and schedule
the new run CANCELNEW Let the previous run continue, and cancal the new run. (Default: KILL_EXISTING)

Parameters for controling the rate and policy of roling updates.,

Scheduling constraints for the tasks. See the section on the constraint specfication language

M True, restart tasics regardiess of success or fallure, (Default: False)

Maximum number of falures after which the task is considered to have failed (Defauit: 1) Set to -1 to allow for infinite failures
Preamption priority 10 give the task (Default 0). Tasks with higher pricrities may preempt tasks at lower priorities.

Whether or not this & a production task backed by quota (Default: False). Production jobs may preempt arry non-production
job, and may only be preempted by production jobs Iin the same role and of higher pricrity. To run jobs at this level, the job role
must have the appropriate quota.

heath_check_conf ig Parameters for controling a tasi’s heakh checiks via HTTP. Only used if a heakh port was assigned with a command line

object

wildcard.

Container object An optional container o run all processes inside of.

Job Lifecycle

e

Active State. Any Task in this
state can transition into Lost.

Terminal State. A single Task ID in this state can
never transition into an Initial or Active State,

Spawning State. If a Task transitions into this state, a replacement Task with a
new Task ID is created before transitioning the current Task into KILLED.

hello_world.aurora

import os

hello_world_
hello_world_

resources

processes

process = Process(name = 'hello_world', cmdline = 'echo hello world')
task = Task(
= Resources(cpu = 0.1, ram = 16 * MB, disk = 16 * MB),

= [hello_world_process])

hello_world _job = Job(

cluster =

role = os.

"clusterl’,
getenv('USER"),

task = hello world task)
jobs = [hello_world_job]

Then issue the following commands to create and kill the job, using your own values for the job key.

aurora job create clusterl/$USER/test/hello_world hello_world.aurora

aurora job kill clusterl/$USER/test/hello_world

Kafka on Aurora

import os
import textwrap

class Profile(Struct):
archive = Default(String, 'https://archive.apache.org/dist')
gpg_grp = Default(String, 'https://people.apache.org/keys/group')
svc = Default(String, 'kafka')
svc_ver = Default(String, '0.8.1.1")
svc_ver_scala = Default(String, '2.10")
svc_prop_file = Default(String, 'server.properties')
jvm_heap = Default(String, -Xmx1G -Xms1G')

common = Process(
name = 'fetch commons',
cmdline = textwrap.dedent(
hdfs dfs -get /dist/scripts.tgz
tar xf scripts.tgz

")
)

Kafka on Aurora

dist = Process(
name = 'fetch {{profile.svc}} v{{profile.svc_ver_scala}}-{{profile.svc_ver}} distribution’,
cmdline = textwrap.dedent(""
command -v curl >/dev/null 2>&1 || { echo >&2 "error: 'curl' is not installed. Aborting."; exit 1; }
eval curl -sSfL '-O {{profile.archive}}/kafka/{{profile.svc_ver}}/kafka_{{profile.svc_ver_scala}}-
{{profile.svc_ver}}.tgz'{,.asc,.md5}
if command -v md5sum >/dev/null; then
md5sum -c kafka_{{profile.svc_ver_scala}}-{{profile.svc_ver}}.tgz.md5
else
echo "warn: 'md5sum’ is not installed. Check skipped." >&2
fi
if command -v gpg >/dev/null; then
curl -sSfL {{profile.gpg_grp}}/kafka.asc | gpg --import
gpg kafka_{{profile.svc_ver_scala}}-{{profile.svc_ver}}.tgz.asc
else
echo "warn: 'gpg' is not installed. Signature verification skipped." >&2
fi
tar xf kafka_{{profile.svc_ver_scala}}-{{profile.svc_ver}}.tgz
Illlll)
)

Kafka on Aurora

register = Process(
name = 'register-service',
cmdline = textwrap.dedent(
export IP=$(host "hostname™ | tr' ' "\n' | tail -1)
Iscripts/common/registry.sh -r {{profile.svc}}-{{environment}} -i {{mesos.instance}} -p "$IP:{{thermos.ports[client]}}"
™)
)

unregister = Process(
name = 'unregister-service',
final = True,
cmdline = textwrap.dedent(""
Jscripts/common/registry.sh -u {{profile.svc}}-{{environment}} -i {{mesos.instance}}

")
)

Kafka on Aurora

config = Process(

name = 'create {{profile.svc_prop_file}}',

cmdline = textwrap.dedent("""
export ZK_CONNECT=$(echo -e "./scripts/common/registry.sh -q zookeeper-{{environment}}-client™ | awk {printf("%s,", $0)}')
export IP=$(host “hostname’ | tr ' ' "\n' | tail -1)
echo-e"
broker.id={{mesos.instance}}
port={{thermos.ports[client]}}
host.name=$IP
advertised.host.name=$IP
num.network.threads=2
num.io.threads=8
socket.send.buffer.bytes=1048576
socket.receive.buffer.bytes=1048576
socket.request.max.bytes=104857600
log.dirs=kafka-logs
num.partitions=1
log.retention.hours=168
log.segment.bytes=536870912
log.retention.check.interval.ms=60000
log.cleaner.enable=false
zookeeper.connect=$ZK_CONNECT
zookeeper.connection.timeout.ms=30000
" > {{profile.svc_prop_file}}

echo "Wrote '{{profile.svc_prop_file}}":"
cat {{profile.svc_prop_file}}
oy
)

Kafka on Aurora

run = Process(
name = 'run {{profile.svc}},
cmdline = textwrap.dedent("""
export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:kafka_{{profile.svc_ver_scala}}-{{profile.svc_ver}}/config/
log4j.properties”
export KAFKA_HEAP_OPTS="{{profile.jvm_heap}}"
export EXTRA_ARGS="-name kafkaServer -loggc"

kafka_{{profile.svc_ver_scala}}-{{profile.svc_ver}}/bin/kafka-run-class.sh $EXTRA ARGS kafka.Kafka
{{profile.svc_prop_file}}

")
)

Kafka on Aurora

base task = Task(
processes = [register, unregister, common, dist, config, run],
constraints =
order(dist, run) +
order(common, register) +
order(common, config, run)

)

staging_task = base_task(
resources = Resources(cpu = 1.0, ram = 1280*MB, disk = 5*GB)

)

production_task = base_task(
resources = Resources(cpu = 24.0, ram = 23040*MB, disk = 10000*GB)

)

Kafka on Aurora

DEVELOPMENT = Profile()
PRODUCTION = Profile(
jvm_heap = '-Xmx4G -Xms4G'

base_job = Service(
name = 'kafka’,
role = os.getenv('USER')

)
jobs =[
base_job(
cluster = dc1,
environment = 'devel,
instances = 4000,
contact = ‘root@localhost',
task = staging_task.bind(
profile = DEVELOPMENT
)
),
base_job(
cluster = ‘dc1’,
environment = 'prod’,
instances = 150,
production = True,
contact = ‘root@localhost',
task = production_task.bind(
profile = PRODUCTION
)
)
]

The future of Kafka on Mesos

e A Mesos Kafka framework https://github.com/mesos/kafka

U
2
b

<>
<K
<5
1S

>

<

https://github.com/mesos/kafka

Sample Frameworks

C++ - https://github.com/apache/mesos/tree/master/src/examples

Java - https://github.com/apache/mesos/tree/master/src/examples/java

Python - https://github.com/apache/mesos/tree/master/src/examples/python

Scala - https://github.com/mesosphere/scala-sbt-mesos-framework.g8

Go - https://github.com/mesosphere/mesos-go

https://github.com/apache/mesos/tree/master/src/examples
https://github.com/apache/mesos/tree/master/src/examples/java
https://github.com/apache/mesos/tree/master/src/examples/python
https://github.com/mesosphere/scala-sbt-mesos-framework.g8
https://github.com/mesosphere/mesos-go

Frameworkinfo

https://github.com/apache/mesos/blob/master/include/mesos/mesos.proto

message FrameworkInfo {

required string user = 1;

required string name = 2;

optional FrameworkID id = 3;

optional double failover timeout = 4 [default = 0.0];
optional bool checkpoint = 5 [default = false];
optional string role = 6 [default = "*"];

optional string hostname = 7;

optional string principal = 8;

optional string webui_url = 9;

https://github.com/apache/mesos/blob/master/include/mesos/mesos.proto

Taskinfo

message TaskInfo {

}

required
required
required
repeated
optional
optional
optional
optional

optional

optional

optional

string name = 1;

TaskID task_id = 2;

SlaveID slave_id = 3;
Resource resources = 4;
ExecutorInfo executor = 5;
CommandInfo command = 7;
ContainerInfo container = 9;
bytes data = 6;

HealthCheck health_check = 8;

Labels labels = 10;

DiscoveryInfo discovery = 11;

TaskState

/

*
*
*
*
*

*

e

k%

Describes possible task states. IMPORTANT: Mesos assumes tasks that
enter terminal states (see below) imply the task is no longer
running and thus clean up any thing associated with the task
(ultimately offering any resources being consumed by that task to
another task).
/
num TaskState {
TASK_STAGING = 6; // Initial state. Framework status updates should not use.
TASK_STARTING = 0;
TASK_RUNNING = 1;
TASK_FINISHED = 2; // TERMINAL. The task finished successfully.
TASK_FAILED = 3; // TERMINAL. The task failed to finish successfully.
TASK_KILLED = 4; // TERMINAL. The task was killed by the executor.
TASK_LOST = 5; // TERMINAL. The task failed but can be rescheduled.
TASK_ERROR = 7; // TERMINAL. The task description contains an error.

Scheduler

[e*
* Invoked when the scheduler successfully registers with a Mesos
* master. A unique ID (generated by the master) used for
* distinguishing this framework from others and Masterinfo
* with the ip and port of the current master are provided as arguments.
*/
def registered(
driver: SchedulerDriver,
frameworkld: FrameworklID,
masterinfo: MasterIinfo): Unit = {
log.info("Scheduler.registered")
log.info("FrameworklD:\n%s" format frameworkld)
log.info("MasterInfo:\n%s" format masterinfo)

Scheduler

[e*
* Invoked when the scheduler re-registers with a newly elected Mesos master.
* This is only called when the scheduler has previously been registered.
* MasterInfo containing the updated information about the elected master
* is provided as an argument.
*/

def reregistered(

driver: SchedulerDriver,
masterinfo: Masterinfo): Unit = {
log.info("Scheduler.reregistered")

log.info("MasterInfo:\n%s" format masterinfo)

Scheduler

/**Invoked when resources have been offered to this framework. A single offer will only contain resources from a

single slave. Resources associated with an offer will not be re-offered to _this_ framework until either (a) this
framework has rejected those resources or (b) those resources have been rescinded.Note that resources may be
concurrently offered to more than one framework at a time (depending on the allocator being used). In that case,
the first framework to launch tasks using those resources will be able to use them while the other frameworks will
have those resources rescinded (or if a framework has already launched tasks with those resources then those
tasks will fail with a TASK_LOST status and a message saying as much).*/

def resourceOffers(

}

driver: SchedulerDriver, offers: JList[Offer]): Unit = {
log.info("Scheduler.resourceOffers")
/I print and decline all received offers
offers foreach { offer =>
log.info(offer.toString)
driver declineOffer offer.getld

}

Scheduler

[e*
* Invoked when an offer is no longer valid (e.g., the slave was
* lost or another framework used resources in the offer). If for
* whatever reason an offer is never rescinded (e.g., dropped
* message, failing over framework, etc.), a framwork that attempts
* to launch tasks using an invalid offer will receive TASK_LOST
* status updats for those tasks.
*/
def offerRescinded(
driver: SchedulerDriver,
offerld: OfferID): Unit = {

log.info("Scheduler.offerRescinded [%s]" format offerld.getValue)

}

Scheduler

e
* Invoked when the status of a task has changed (e.g., a slave is
* lost and so the task is lost, a task finishes and an executor
* sends a status update saying so, etc). Note that returning from
* this callback _acknowledges_ receipt of this status update! If
* for whatever reason the scheduler aborts during this callback (or
* the process exits) another status update will be delivered (note,
* however, that this is currently not true if the slave sending the
* status update is lost/fails during that time).

*/

def statusUpdate(
driver: SchedulerDriver, status: TaskStatus): Unit = {
log.info("Scheduler.statusUpdate:\n%s" format status)

}

Scheduler

[e
* Invoked when an executor sends a message. These messages are best
* effort; do not expect a framework message to be retransmitted in
* any reliable fashion.

*/

def frameworkMessage(
driver: SchedulerDriver,
executorld: ExecutorlD,
slaveld: SlavelD,
data: Array[Byte]): Unit = {

log.info("Scheduler.frameworkMessage")

Scheduler

*k

* Invoked when the scheduler becomes "disconnected" from the master
* (e.g., the master fails and another is taking over).
*/

def disconnected(driver: SchedulerDriver): Unit = {
log.info("Scheduler.disconnected")

}

o>
* Invoked when a slave has been determined unreachable (e.g.,
* machine failure, network partition). Most frameworks will need to
* reschedule any tasks launched on this slave on a new slave.
*/
def slaveLost(
driver: SchedulerDriver,
slaveld: SlavelD): Unit = {
log.info("Scheduler.slavelLost: [%s]" format slaveld.getValue)

}

Scheduler

e

* Invoked when an executor has exited/terminated. Note that any
* tasks running will have TASK_LOST status updates automagically
* generated.
*/

def executorLost(
driver: SchedulerDriver,executorld: ExecutorlID, slaveld: SlavelD,
status: Int): Unit = {
log.info("Scheduler.executorLost: [%s]" format executorld.getValue)

}

o>
* Invoked when there is an unrecoverable error in the scheduler or
* scheduler driver. The driver will be aborted BEFORE invoking this
* callback.
*/

def error(driver: SchedulerDriver, message: String): Unit = {

log.info("Scheduler.error: [%s]" format message)

}

Executor

[e*
* Invoked once the executor driver has been able to successfully
* connect with Mesos. In particular, a scheduler can pass some
* data to it's executors through the Executorinfo.data
* field.

*/

def registered(
driver: ExecutorDriver,
executorinfo: Executorinfo,
frameworkInfo: FrameworklInfo,
slavelnfo: Slavelnfo): Unit = {

log.info("Executor.registered")

Executor

[e*

* Invoked when the executor re-registers with a restarted slave.
*/

def reregistered(
driver: ExecutorDriver,
slavelnfo: Slavelnfo): Unit = {
log.info("Executor.reregistered")

}

/** Invoked when the executor becomes "disconnected" from the slave
* (e.g., the slave is being restarted due to an upgrade).
*/

def disconnected(driver: ExecutorDriver): Unit = {
log.info("Executor.disconnected")

}

Executor

e
* Invoked when a task has been launched on this executor (initiated
* via Scheduler.launchTasks. Note that this task can be
* realized with a thread, a process, or some simple computation,
* however, no other callbacks will be invoked on this executor
* until this callback has returned.
*/
def launchTask(driver: ExecutorDriver, task: TaskInfo): Unit = {

log.info("Executor.launchTask")

}

Executor

[e*
* Invoked when a task running within this executor has been killed
* (via SchedulerDriver.killTask). Note that no status
* update will be sent on behalf of the executor, the executor is
* responsible for creating a new TaskStatus (i.e., with
* TASK_KILLED) and invoking ExecutorDriver.sendStatusUpdate.
*/

def killTask(driver: ExecutorDriver, taskld: TaskID): Unit = {

log.info("Executor.killTask")

}

Executor

e
* Invoked when a framework message has arrived for this
* executor. These messages are best effort; do not expect a
* framework message to be retransmitted in any reliable fashion.
*/
def frameworkMessage(driver: ExecutorDriver, data: Array[Byte]): Unit = {
log.info("Executor.frameworkMessage")

}

Executor

e
* Invoked when the executor should terminate all of it's currently
* running tasks. Note that after a Mesos has determined that an
* executor has terminated any tasks that the executor did not send
* terminal status updates for (e.g., TASK_KILLED, TASK_FINISHED,
* TASK_FAILED, etc) a TASK_LOST status update will be created.
*/

def shutdown(driver: ExecutorDriver): Unit = {

log.info("Executor.shutdown")

}

Executor

e
* Invoked when a fatal error has occured with the executor and/or
* executor driver. The driver will be aborted BEFORE invoking this
* callback.
*/
def error(driver: ExecutorDriver, message: String): Unit = {
log.info("Executor.error")

}

Questions?

Big Data Open Source Security LLC
http://www.stealth.ly

Twitter: @allthingshadoop

http://www.stealth.ly/
http://www.twitter.com/allthingshadoop

