
Marathon
A self-serve interface

to your cluster

 @ Mesosphere, Inc.Connor Doyle

We are Mesosphere

Overview

What is Mesos?

Intro to Marathon

Upcoming Features

Mesos is...

a top-level Apache project
a cluster resource broker

scalable, fault-tolerant, battle-tested
an SDK for distributed apps

Why Mesos?

Static partitioning doesn't scale
Use dynamic allocation instead

Cluster scheduling is a hard

problem

NP-hard in fact!

Monolithic schedulers need context

Idea: the "Resource Offer"

Centralize accounting & allocation

Push some logic down to apps

High Level View of Mesos

Framework = scheduler + executor

Schedulers get resource offers

Executors run tasks

Say hi to Marathon

A self-serve interface to your cluster
Distributed "init" for long-running services

A private fault-tolerant Paas

Marathon Concepts

An app describes a task
A task is an instance of an app

Marathon creates tasks for apps

Marathon does it!

Start, stop, scale, update apps
View running tasks

Kill an individual task
Nice UI, Nice API

Marathon does it!

Event bus

App versioning

Highly available, no SPoF

Marathon does it!

Placement constraints

// usage

{ "constraints": [["attribute", "OPERATOR", "value"]] }

// examples

{ "constraints": [["hostname", "UNIQUE"]] }

{ "constraints": [["rack_id", "CLUSTER", "rack-1"]] }

{ "constraints": [["rack_id", "GROUP_BY"]] }

Marathon does it!

Task health checks (TCP, HTTP)

{

 "id": "my-app",

 ...,

 "healthChecks": [

 {

 "protocol": "HTTP",

 "portIndex": 0,

 "path": "/health",

 "maxConsecutiveFailures": 3,

 "gracePeriodSeconds": 10,

 "intervalSeconds": 20,

 "timeoutSeconds": 5

 }

]

}

Marathon does it!

Task health checks (TCP, HTTP)

{
 "appId": "my-app",
 "healthCheckResults": [
 {
 "alive": true,
 "consecutiveFailures": 0,
 "firstSuccess": "2014-07-28T16:21:58.054Z",
 "lastFailure": null,
 "lastSuccess": "2014-07-28T16:22:17.225Z",
 "taskId": "my-app.45dba483-1673-11e4-8316-685b35a05cac"
 }
],
 "host": "localhost",
 "id": "my-app.45dba483-1673-11e4-8316-685b35a05cac",
 "ports": [31693],
 "stagedAt": "2014-07-28T16:21:47.704Z",
 "startedAt": "2014-07-28T16:22:01.608Z",
 "version": "2014-07-28T16:21:37.005Z"
}

Get excited -- new features!

Rolling deploy / restart
Namespaced apps

Dependencies
Executor health checks

Artifact staging
Configurable exponential backoff

Marathon REST

POST /v2/apps

GET /v2/apps

PUT /v2/apps/{appId}

GET /v2/apps/{appId}/tasks

DELETE /v2/apps/{appId}/tasks/{taskId}

...

Service Discovery

Set environment variables

Read config from device (rsync'ed to fs)

Read from K-V store

Use DNS

HAProxy works pretty well

Tasks Resource

GET /v2/tasks HTTP/1.1
Accept: text/plain

HTTP/1.1 200 OK
Content-Type: text/plain
Server: Jetty(8.y.z-SNAPSHOT)
Transfer-Encoding: chunked

my-app 19385 localhost:31336 localhost:31364
my-app 11186 localhost:31337 localhost:31365

What about Docker?

Decouples dev from deployment
`docker build`

Now what? Deploy... somehow

Mesos to the rescue!

POST /v2/apps
{
 “id”: “cassandra",
 “container”: {
 “image”: “docker:///mesosphere/cassandra:2.0.6”,
 “options”: [“-v”, “/mnt:/mnt:rw”, “-e”, “CLUSTER_NAME=prod”]
 }
}

Existing support

External containerizer called Deimos
Calls out to Docker on task launch

For imminent release

Docker as a 1st class citizen

ContainerInfo vs DockerInfo?

One of these two will land (0.19.1 or 0.20.0

at the latest)

Thanks!
Come and talk to us

