
Mesos Go Stateful

An Abstraction for frameworks running stateful workload

Dhilip & Amit - PaaS Team, Huawei

Contents

● Why Abstraction
● Available solution in Kubernetes
● Available solution in Mesos
● Mesos Go Stateful

Design Patterns

● Four essential element Pattern, Problem, Solution and Consequences
● Program to an interface not an Implementation
● General reusable solution to a commonly occurring problem
● Not a finished design that can be transformed directly into source or machine code
● Description or template for how to solve a problem that can be used in many different situations
● Design patterns can speed up the development process by providing tested, proven development

paradigms
● Design patterns reside in the domain of modules and interconnections
● Mostly there are 23 types of design patterns categorized in

Behavioral design patterns,Creational design patterns,Structural
 design patterns...etcd

● Example : Factory pattern , Singleton Pattern, Adaptor Pattern etc

Why Abstraction

● Reducing the complexity of the systems
● Key elements of good software design
● Decouple software modules
● More self-contained modules
● Makes the application extendable in much easier way
● Code Reusability
● Refactoring much easier

We are Proposing a Design Pattern for writing Framework for Stateful workload along with
abstracted modules on top of mesos-go

 Similar Projects

Kubernetes charts and helm

● Helm is a tool for managing Kubernetes applications
● Charts are packages of pre-configured Kubernetes resources

 Helm can be used to

● Create reproducible builds of your Kubernetes applications

● Intelligently manage your Kubernetes manifest files

● Share your own applications as Kubernetes charts

Kubernetes PetSet

• Typically, pods are treated as stateless units, so if one of them is unhealthy or gets superseded,

Kubernetes just disposes it.

• So Petset will be used in contrast ,is a group of stateful pods that has a stronger notion of identity.

• It assigns unique identities to individual instances of an application

• PetSet requires {0..n-1} Pets

• Each Pet has a deterministic name, PetSetName-Ordinal, and a unique identity

• The identity of a pet set comprised of

 A stable DNS hostname

 An ordinal index

 Storage linked to ordinal and hostname

CoreOs Operator (for K8s)

● Introduced on 3rd Nov 2016
● An Operator is an application-specific controller .
● That extends the Kubernetes API to create, configure, and manage instances of complex stateful

applications on behalf of a Kubernetes user
● An Operator builds upon the basic Kubernetes resource and controller concepts and adds a set of

knowledge or configuration that allows the Operator to execute common application tasks

K8s Operators defines some set of rules

● Operator as scheduler

● Operator create types (application specific task)

● Operator leverage built-in primitives like Service and ReplicaSet

● Decouple Operator lifecycle with workload life cycle

● User can declare desired version

● Operators should be tested against a "Chaos Monkey"

DCOS Commons

● It is a collection of classes and utilities necessary for building a DCOS service
● It is written in Java and is Java 1.8+ compatible.

Spring Cloud

● Provides tools for developers to quickly build some of the common patterns in distributed systems

● It is written in Java
● Main Projects

○ Spring Cloud Config
○ Spring Cloud Netflix
○ Spring Cloud for Cloud Foundry
○ Spring Cloud Security

Analysis of Different Stateful Workload

MySql Kafka ETCD PostgreSql Redis

Master config:
vi /etc/mysql/my.cnf
bind-
address=12.34.56.789
server-id = 1
log_bin=/var/log/mysql/
mysql-bin.log
binlog_do_db =
newdatabase

Leader and follower
config:

vi

~/kafka/config/server1.pr

operties

broker.id=1

port=9092

host.name=ec2-

<IP1>.amazonaws.com

num.partitions=4

zookeeper.connect=ec2-

<IP1>.amazonaws.com:2

080,ec2-

<IP2>.amazonaws.com:2

080

Master and Slave config:

vi /etcd/etcd.conf

--name = infra0

--initial-advertise-peer-urls = http://10.0.1.10:2380

--listen-peer-urls = http://10.0.1.10:2380

--listen-client-urls =

http://10.0.1.10:2379,http://127.0.0.1:2379

--advertise-client-urls=

http://10.0.1.10:2379

--initial-cluster-token = etcd-cluster-1

--initial-cluster =

infra0=http://10.0.1.10:2380,infra1=http://10.0.1.1

1:2380,infra2=http://10.0.1.12:2380

--heartbeat-interval=100 --election-timeout=500

--initial-cluster-state = new

Master config:
vi pg_hba.conf
host replication rep
slave_ip/32 md5
vi postgresql.conf

listen_addresses =
'localhost,master_ip
’
wal_level =
'hot_standby'
archive_mode = on
archive_command
= 'cd .'
max_wal_senders =
1
hot_standby = on

Master config:

vi /etc/redis/redis.conf

tcp-keepalive = 60

bind = 12.34.56.789

requirepass = master_password

appendonly = yes

appendfilename = redis-staging-ao.aof

Slave config:
vi /etc/mysql/my.cnf
bind-address=
12.23.34.456
server-id = 2
binlog_do_db =
newdatabase

mysql>CHANGE MASTER

TO

MASTER_HOST='12.34.56

.789',MASTER_USER='slav

e_user',

MASTER_PASSWORD='pa

ssword',

Note:It automatically handles leader election via

Raft Consensus protocol.

Slave config:
vi pg_hba.conf
host replication rep
master_ip/32 md5
vi postgresql.conf

listen_addresses =
'localhost,slave_ip’
wal_level =
'hot_standby'
archive_mode = on
archive_command
= 'cd .'
max_wal_senders =
1
hot_standby = on

Slave config:

vi /etc/redis/redis.conf

bind = 12.23.34.456

requirepass = slave_password
slaveof = redis_master_ip 6379

masterauth =
master_password

http://10.0.1.10:2380/
http://10.0.1.10:2380/
http://10.0.1.10:2380/
http://10.0.1.10:2380/
http://10.0.1.10:2380/
http://10.0.1.10:2380/
http://10.0.1.10:2379/
http://10.0.1.10:2379/

The Problem
 As a Framework Developer

 Need to expose endpoints

Need to deal with offers

Need to write custom executor

Need to maintain state of the tasks

Need to distribute Workload optimally

May require higher degree of control over

Docker

What is Mesos Go Stateful

High level abstraction on top of frameworks language bindings
which makes framework development for stateful workloads more easier

 https://github.com/huawei-cloudfederation/mesos-go-stateful

 Service Framework

 Abstraction

 Language BInding

 Mesos

Offer

Managemen

t

State

managemen

t

Buffer

managemen

t

Executor

https://github.com/huawei-cloudfederation/mesos-go-stateful
https://github.com/huawei-cloudfederation/mesos-go-stateful
https://github.com/huawei-cloudfederation/mesos-go-stateful
https://github.com/huawei-cloudfederation/mesos-go-stateful
https://github.com/huawei-cloudfederation/mesos-go-stateful
https://github.com/huawei-cloudfederation/mesos-go-stateful
https://github.com/huawei-cloudfederation/mesos-go-stateful
https://github.com/huawei-cloudfederation/mesos-go-stateful

Overall Design

 Mesos Go

Slave Slave

Slave

 Mesos Go Stateful

 Mesos Go

 Framework

Executor Executor Executor

Buffer

Management

Offer

Management

State

Management

 Httplib

● 1000 feet Overview
● HttpLib handles CRUD operation
● Abstract out complexity of Offers

and events from mesos-go
● Decouple framework with language

binding with buffer management.
● Abstract out the Store (key / value)

management

 Store

Design Cont…

Httplib

 Creator

Buffer Manager

Maintainer Destroyer

 Mesos Lib

 Job Q Task Q

 Receive Offer Status Update

 Offer Manager

Cache

● HttpLib maintains controller with user
routes to schedule/destroy workload

● Creation request to Creator for getting it
scheduler as workload.

● Delete request for Destroyer for deleting
workload

● Buffer Manager maintains Queues for
Scheduled Job and Task update.

● Offer manager watches Job queue and
optimally manages the offers

● TaskQ gets updated by Status update
event

● Maintainer keep watch on TaskQ and
Update status of each task in Store.

● State manager provides interface for
Store interactions. It maintains Cache for
faster transactions.

 Master

Store

State Manager

 Executor

Mesos-Go-
Stateful

 Slave

 Executor

 TaskMon TaskMon

Docker-lib

 Workload

 Store

● Pull the docker images from
docker daemon.

● Create docker containers
● Start the containers
● Launch the workload
● Collects stats from docker

container
● Update stats to store
● Monitor the workloads
● Stop the workload

Callbacks

CALL BACK DESCRIPCITION

func (S *TestFWScheduler) Config(I

*typ.Instance, IsMaster bool) []string {

…. }

Will be called before the Instances/Tasks are created,

can be used to auto-generate config files or command

line arguments for each task

func (S *TestFWScheduler) Start(I

*typ.Instance) error { …. }

General call back for starting a workload regardless of

it being a master or slave

func (S *TestFWScheduler) StartMaster(I

*typ.Instance) error { …. }

Specifically a call back to start MASTER/LEADER type

of workloads, perform master related work like

configuring PROXY / Updating service discovery etc.

Will talk to ‘CREATOR’

func (S *TestFWScheduler) StartSlave(I

*typ.Instance) error { …. }

Simlar config call backs for Slaves / Peers to help

service discovery will talk to ‘CREATOR’

func (S *TestFWScheduler) MasterRunning(I

*typ.Instance) error { …. }

Will be invoked when ‘TASK_RUNNING’ update is

recived by the framework.

func (S *TestFWScheduler) SlaveRunning(I

*typ.Instance) error { …. }

Will be invoked when ‘TASK_RUNNING’ update is

recived by the framework.

func (S *TestFWScheduler) MasterLost(I

*typ.Instance) error { …. }

Will be invoked when ‘TASK_RUNNING’ update is

recived by the framework. This could internally call

‘StartMaster’

func (S *TestFWScheduler) SlaveLost(I

*typ.Instance) error { …. }

Will be invoked ind if TASK_LOST / TASK_ERROR /

TASK_FAILED task updates, this could internally call

‘StartSlave’

Project Development Status

Module Progress

Httplib

CMD

Offer

Manager

Executor

Mesoslib

Dockerlib

StateManag

er

BufferManag

er

Demo

Screen Shot: Code Generation

$./codegen -name MConAsia -path $HOME

I1116 07:03:02.223101 14354 gen.go:173] Creating Sub-directories at /home/ubuntu/MConAsia.....

I1116 07:03:02.223265 14354 gen.go:197] Generating Scheduler.go...

I1116 07:03:02.223629 14354 gen.go:229] Generating autofilled config file

I1116 07:03:02.223799 14354 gen.go:250] Project Generation Completed

~/MConAsia$ ls -lrt

total 12

drwxrwxr-x 2 ubuntu ubuntu 4096 Nov 16 07:03 Scheduler

drwxrwxr-x 2 ubuntu ubuntu 4096 Nov 16 07:03 Executor

drwxrwxr-x 2 ubuntu ubuntu 4096 Nov 16 07:03 Config

~/MConAsia/Scheduler$ go build .

~/MConAsia/Scheduler$ ls -lrt

total 24716

-rw-rw-r-- 1 ubuntu ubuntu 1829 Nov 16 07:03 Scheduler.go

-rwxrwxr-x 1 ubuntu ubuntu 25302776 Nov 16 07:03 Scheduler

~/MConAsia/Executor$ go build MConAsiaExecutor.go

~/MConAsia/Executor$ ls -lrt

total 22164

-rw-rw-r-- 1 ubuntu ubuntu 884 Nov 16 07:03 MConAsiaExecutor.go

-rwxrwxr-x 1 ubuntu ubuntu 22688896 Nov 16 07:05 MConAsiaExecutor

Screen Shot: Offer Management

I1116 11:51:00.863705 6620 workloadscheduler.go:29] Framework Tet2 Registered

&FrameworkID{Value:*998fec17-c85e-4fd1-b090-6c421a3e286b-0006,XXX_unrecognized:[],}

I1116 11:51:02.796815 6620 workloadscheduler.go:65] DECLINE OFFERS for 1 Next Hour

I1116 11:52:15.879995 6620 httplib.go:27] HTTP: CREATE request for instance test1

I1116 11:52:15.879995 6620 httplib.go:48] Request Accepted, test1 Instance will be created

I1116 11:52:15.881996 6620 cmd.go:58] CREATOR: Recived {test1 3 {1 100 1 host redis:3.0-alpine}} from

HTTP

I1116 11:52:15.882996 6620 JobList.go:87] JOBLIST: Call NewEvent()

I1116 11:52:15.882996 6620 workloadscheduler.go:188] OfferLIST Queued

I1116 11:52:16.169012 6620 workloadscheduler.go:99] Received Offer with CPU=8 MEM=6960 OfferID=998fec17-

c85e-4fd1-b090-6c421a3e286b-O99

I1116 11:52:16.169012 6620 workloadscheduler.go:143] Launched 1 tasks from this offer

I1116 11:52:16.169012 6620 workloadscheduler.go:99] Received Offer with CPU=8 MEM=6960 OfferID=998fec17-

c85e-4fd1-b090-6c421a3e286b-O100

I1116 11:52:16.169012 6620 workloadscheduler.go:143] Launched 0 tasks from this offer

I1116 11:52:16.169012 6620 workloadscheduler.go:99] Received Offer with CPU=8 MEM=6960 OfferID=998fec17-

c85e-4fd1-b090-6c421a3e286b-O101

I1116 11:52:16.170012 6620 workloadscheduler.go:143] Launched 0 tasks from this offer

I1116 11:52:16.170012 6620 workloadscheduler.go:145] workload Receives offer

I1116 11:52:16.608037 6620 workloadscheduler.go:155] workload Task Update received

I1116 11:52:22.358366 6620 workloadscheduler.go:65] DECLINE OFFERS for 1 Next Hour

Future Work

● Add generic UI capability
● Reimplement Mr-Redis Framework
● Implement Regression suit to test SDK
● Test with different stateful workload

Mesos Community Info

http://www.meetup.com/Bangalore-Mesos-User-Group/
Krishna M Kumar <krishna.m.kumar@huawei.com>
Dhilip Kumar S <dhilip.kumar.s@huawei.com>
Amit Kumar Roushan <amit.roushan@huawei.com>

Thank You

