Secure Your Apps |
Production using
Mesos Containerizer

HELLO!

| am Benjamin Bannier

| am here because | love
Containers and Mesos.
You can find me at
@benjamin

Introduction

Why Containerization ?

Containers are not VMs
Containers allow you to run a linux process

within certain constraints.
Isolate

user

network [Process } cgroups

»
>

pid

Why containerization
Abstracts away underlying system

For users

For containerized Applications
Isolation - resources, networking and visibility
Helps to define application surface
Relevance to Enterprise

Introduction

Limits of Containerization ?

cross talk between containers and
Goals

host processes (-> seccomp)

. o o improved isolation
containers requiring privileged
access to own container (-> user reduce the surface area of attack

namespaces)

less privileged process
containers requiring priviledged

access to host facilities (->
capabilities)

User Namespaces

HELLO!

| am Srini Brahmaroutu
| am from IBM, learning
Containers and Mesos.
You can find me at
@srbrahma

l User Namespaces

History

What are User Namespaces
Virtualize users
Run unprivileged containers
Why User Namespaces

Protect global resources
Contain application’s root privileges

l User Namespaces

Mesos Tasks
unprivileged tasks

Enable User Namespace on Mesos
Agent flags
Isolators
User mapping

l User Namespaces

Mesos Agent flags - switch_user,userns?

unprivileged tasks
Tasks running in user namespace

sudo GLOG_v=2 ./bin/mesos-agent.sh --master=127.0.0.1:5050 --image_providers=APPC,DOCKER

--isolation=namespaces/user --switch_user=true &

UnprivilegedUser$> mesos-execute ... // run your task

l User Namespaces

Mesos Isolators for User Namespace

Create : Creates a isolator class ...
Prepare : Sets the clone flag
Isolate : Writes map file

Update/Recover/Cleanup : Not required

User Namespaces

»User Mapping
/proc/[pid]/uid_map

/proc/[pid]/gid_map

/etc/subuid & /etc/subgid
\

l User Namespaces

File sytems and User Namespaces

Share image layers
Mount filesystem

HELLO!

Again, let's talk about
Capabilities.

Capabilities

A POSIX/Linux mechanism to divide privileges (e.g.,
of root) 1into fine-grained capabilities.

Examples:

e binding to privileged ports < 1024,

e sending signals to arbitrary processes,
e bypass file permission checks,

e and many more.

Purpose

To perform any privileged action, tasks needed to be
run with full superuser privileges.

e hard to control privilege access,
e user errors can have (unintended) effects beyond
their environment.

Does not fit expectations for containerization well.

The Competitor’s
Permissions

App permissions
System tools

Change system disy

ent phone fr

Your location
Approximate (ne

lo

Phone calls

Read |ZI|'|L'JI'|'C’ status and iaentity

Network communication
Full network access

Hardware controls

Take pictur

es and videos
Hide

Network communication

Receive data from

play settings,

Our App's
Permissions

modify

om sleeping,

ork-based) location, precise

App permissions

Flashlight Free:No Permissions nee

Hardware controls

Take pictures and videos

nternet, view Wi-Fi

connections, view network connections

Integration into Mesos

Capabilities isolator linux/capabilities.

e Operator sets up agents with set of allowed
capabilities
e User request required capabilities for their tasks.

Agent capabilities

Possible future extensions

Non-root tasks can effectively only use file-based
capabilities.

Linux > 4.3 1introduces ambient capabilities to
address this.

We could extend support for capabilities for non-root
tasks, e.g., via ambient capabilities, or user
namespaces.

In the context of the Mesos containerizer we
introduced

new Mesos abstractions for capabilities,
interfaces for operators to grant capabilities to
tasks,

e 1interfaces for users to request capabilities.

This adds new containerization tools for privileged
tasks.

HELLO!

| am Jay Guo

| am from IBM,
contributing to many open
sources and Mesos.

Me: @guoger

l Seccomp - What is it?

A mechanism to restrict syscalls a process can
make

One-way transition into “secure” state.

l Seccomp - Why do we need it?

Reduce attack surface of Kernel, which is
shared among containers and host.

Execute customer’s code with more
confidence.

l Seccomp - How does it work?

A Berkely Packer Filter(BPF) program loaded into kernel to control
which system calles are permitted.

Every syscall goes through the filter first
Actions include

KILL,

TRAP,

ERRNO,

TRACE,

ALLOW

l Seccomp - Who's using it?

openSSH

vsftpd
Chrome/Chromium
Docker

Seccomp - When it comes to Mesos ...

Enforced by operator via mesos agent flags
—-isolation=linux/seccomp
--seccomp_profile=/home/myseccomp.json

Customized profile or default one providing
mild protection.

Stack up seccomp profiles for extra security

l What can be done now ?

User namespaces

Review for patches

Need to think about filesystems
Capabilities

In the code base, use it and thrive
Seccomp

Review for patches

l Improved Container Security

CAPABILTIES

THANKS!

Any questions?

Special thanks to all the people who made and
released these awesome resources for free:

Presentation template by SlidesCarnival
Photographs by Startupstockphotos

http://www.slidescarnival.com/
http://startupstockphotos.com/

