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Motivation
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Zookeeper is...

● Mature
● Feature-rich
● ...
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But!

● Primitive K/V store
○ Provide your own tooling for other abstractions!

● Heavy
● Hard dependencies
● Language binding instead of RESTfull API
● ...
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It’s all about having options!
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● Chocolate

● Strawberry

● Vanilla

● ...



Mesos HA:
An Overview
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High Availability

First of all, we need a Distributed Key-Value storage...
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Mesos HA

● At least three Mesos Masters
● One leading Master

○ Leader election
○ Leader detection

● Replicated Log

Zookeeper as the distributed key-value store
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Mesos HA: Leader Election

● All Masters “contend” to be 
the leader!
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Mesos HA: Leader Election

● All Masters “contend” to be 
the leader!

● Only one succeeds; others fail
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Mesos HA: Leader Election

● All Masters “contend” to be 
the leader!

● Only one succeeds; others fail 
● We have a leading Masters!
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Mesos HA: Losing a Leader

● Suppose the leading Master is 
“lost”
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Mesos HA: Losing a Leader

● Suppose the leading Master is 
“lost”

● All other Masters are notified
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Mesos HA: Losing a Leader

● Suppose the leading Master is 
“lost”

● All other Masters are notified
● The remaining Masters 

contend again
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Mesos HA: Losing a Leader

● Suppose the leading Master is 
“lost”

● All other Masters are notified
● The remaining Masters 

contend again
● One of them succeeds
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Mesos HA: Losing a Leader

● Suppose the leading Master is 
“lost”

● All other Masters are notified
● The remaining Masters 

contend again
● One of them succeeds

● A new leader is elected!
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What about Agents/Frameworks?
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Mesos HA: Leader Detection

● Framework/Agent connects to 
Zookeeper to “detect” about 
the current leading Master
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Mesos HA: Leader Detection

● Framework/Agent connects to 
Zookeeper to “detect” about 
the current leading Master

● Zookeeper provides Master’s 
location
○ I.e. IP:Port
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Mesos HA: Leader Detection

● Framework/Agent connects to 
Zookeeper to “detect” the 
current leading Master

● Zookeeper provides Master’s 
location

● Framework/Agent connects
to the “leader”
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What about Replicated Log?

Replicated Log lets you create replicated fault-tolerant 
append-only logs. The Mesos master uses Replicated Log to store 
cluster state in a replicated, durable way.
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Mesos HA: Replicated Log

● Each replica registers its pid  
into ZK and maintain the 
presence.
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Mesos HA: Replicated Log 
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● Each replica registers its pid  
into ZK and maintain the 
presence.

● When new replica joins the 
cluster, existing ones get 
notified and get to know the 
pid of new replica.
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Mesos HA: Replicated Log 
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● Each replica registers its own 
pid  into ZK and maintain the 
presence.

● When new replica joins the 
cluster, existing ones get 
notified and get to know the 
pid of new replica.

● Every replica knows all nodes 
in the cluster and do Paxos.
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Replacing
Zookeeper
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? = ZK Etcd Consul|||| ...
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● Master Contender for leader election

Three Key Components
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● Master Contender for leader election

● Master Detector for discovery

Three Key Components
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● Master Contender for leader election

● Master Detector for discovery

● PIDGroup for initialization

Three Key Components
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bool contend();

MasterInfo detect(MasterInfo previous);

void initialize(pid_t pid); ZKZK?
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A Case for Modularization!
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● Already a clear-cut interfaces between:
○ Master and Contender
○ Agent and Detector
○ Framework and Detector

● For new distributed KV store 
implementation, we just write the 
module without having to modify Mesos 
itself! ZKZK?
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Let’s Talk about 
Modules!
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Mesos
Modules

● Module/Plugin/Extension
● Add/replace a Mesos component

○ Isolators
○ Authenticators
○ …

● Hook modules:
○ Listen to interesting events
○ Modify/enhance certain code paths
○ Prepare/enhance task environment
○ ...
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● Compiled as shared libraries
○ E.g., libmesos_network_overlay.so

● Specified when launching Master/Agent/Framework
mesos-agent.sh <master-parameters>

  --modules=file:///path/to/modules.json

  --isolation=”my_isolator”

● Gets loaded during initialization
○ E.g., the ”my_isolator” isolator will be loaded into the Agent to 

provide task isolation

How are Modules Used?
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Community Modules
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I just wrote a Mesos module that provides a really cute feature.

How do I make it useful for others!



Modules are Tricky!
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● Developing
● Building
● Testing
● Using
● Hosting

● How can we make it all better for community?



Writing Modules

● Doesn’t require intimate Mesos knowledge
○ Just the details of the subsystem being implemented (e.g., Isolators)

● Familiarity with Mesos model is required
○ E.g., libprocess, events, futures and promises, etc.

● Closely tied with Mesos version
○ To ensure mutual compatibility
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Building Modules: Issues

● Build Mesos first!
○ Install all Mesos dependencies
○ Takes a long time to build
○ Version dependencies
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Building Modules: Good News!

● Starting Mesos 1.0 release, pre-compiled Mesos deb/rpm packages 
contain everything needed to build modules
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Testing Modules
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I just wrote a simple Mesos module that provide a cute feature 
and I know how to build it!

Can I write unit tests for it?



Testing Modules

● Key questions:
○ How to get good test coverage?
○ How can we solicit help from community?

● Good news!
○ Efforts on the way to create a “libmesos_test” library that can be used to 

create/run gmock style tests just like with Mesos itself.
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How do we, as a community, make third-party modules available for 
general consumption?

While making sure the developers and consumers can seamlessly 
test/integrate into their environments!

Community-Driven Modules
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Community Modules: Proposal

● A central registry that contains pointers:
○ E.g., github.com/mesos/modules 
○ Each module (or a set of related modules) in its own repository

● Make Mesos version-specific binary rpm/deb modules available
○ E.g., lib_my_module_<module-version>_<mesos_version>.so
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https://github.com/mesos/modules


Module CI: Coming Soon!

● Builds binary packages for every registered module
○ Across a given set of Mesos versions
○ Work-in-progress!

● Automatic build/testing for upcoming Mesos release
○ Catch incompatibilities sooner!

● Run tests!
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Let’s take a look at 
Etcd!
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Etcd:
A Distributed 
KV Store

● HTTP API (no language bindings)
● May already exist in your environments
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Etcd in a Mesos Cluster
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● Create Etcd-specific modules for:
○ Master detector
○ Master Contender
○ PIDGroup

● No need to modify/rebuild Mesos
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Again, it’s all about having options!
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● Chocolate

● Strawberry

● Vanilla

● ...



Again, it’s all about having options!
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● ...



Demo!
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Module CI:
A Glimpse!
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Thanks!
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● Etcd modules:
○ https://github.com/guoger/mesos-etcd-module/tree/1.1.x
○ https://github.com/guoger/mesos/tree/pid-group-on-1.1.x
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