
Getting Rid of
Zookeeper

MesosCon Asia 2016

1

Jay Guo
Software Developer @IBM
guojiannan@cn.ibm.com

Kapil Arya
Mesos Committer @Mesosphere

kapil@mesosphere.io

mailto:guojiannan@cn.ibm.com
mailto:guojiannan@cn.ibm.com
mailto:kapil@mesosphere.io
mailto:kapil@mesosphere.io

Motivation

2

Zookeeper is...

● Mature
● Feature-rich
● ...

3

But!

● Primitive K/V store
○ Provide your own tooling for other abstractions!

● Heavy
● Hard dependencies
● Language binding instead of RESTfull API
● ...

4

It’s all about having options!

5

● Chocolate

● Strawberry

● Vanilla

● ...

Mesos HA:
An Overview

6

High Availability

First of all, we need a Distributed Key-Value storage...

7

Mesos HA

● At least three Mesos Masters
● One leading Master

○ Leader election
○ Leader detection

● Replicated Log

Zookeeper as the distributed key-value store

8

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

leader

Zookeeper
cluster

Mesos Agents
/ Frameworks

Mesos HA: Leader Election

● All Masters “contend” to be
the leader!

9

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

Contend

Contend Contend

Mesos HA: Leader Election

● All Masters “contend” to be
the leader!

● Only one succeeds; others fail

10

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

Fail

Fail Success

Mesos HA: Leader Election

● All Masters “contend” to be
the leader!

● Only one succeeds; others fail
● We have a leading Masters!

11

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

Watch

Watch Hold

Mesos HA: Losing a Leader

● Suppose the leading Master is
“lost”

12

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

Watch

Watch

Master
connection
lost

Mesos HA: Losing a Leader

● Suppose the leading Master is
“lost”

● All other Masters are notified

13

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

Notify

Notify

Master
connection
lost

Mesos HA: Losing a Leader

● Suppose the leading Master is
“lost”

● All other Masters are notified
● The remaining Masters

contend again

14

ZKZKZK

Mesos
Master

Mesos
Master

Contend

Contend

Mesos
Master

Mesos HA: Losing a Leader

● Suppose the leading Master is
“lost”

● All other Masters are notified
● The remaining Masters

contend again
● One of them succeeds

15

ZKZKZK

Mesos
Master

Mesos
Master

Success

Fail

Mesos
Master

Mesos HA: Losing a Leader

● Suppose the leading Master is
“lost”

● All other Masters are notified
● The remaining Masters

contend again
● One of them succeeds

● A new leader is elected!

16

ZKZKZK

Mesos
Master

Mesos
Master

Watch

Hold

Mesos
Master

What about Agents/Frameworks?

17

Mesos HA: Leader Detection

● Framework/Agent connects to
Zookeeper to “detect” about
the current leading Master

18

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

Watch

Watch Hold

Mesos Agents
/ Frameworks

Detect

Mesos HA: Leader Detection

● Framework/Agent connects to
Zookeeper to “detect” about
the current leading Master

● Zookeeper provides Master’s
location
○ I.e. IP:Port

19

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

Watch

Watch Hold

IP:Port

Mesos Agents
/ Frameworks

Mesos HA: Leader Detection

● Framework/Agent connects to
Zookeeper to “detect” the
current leading Master

● Zookeeper provides Master’s
location

● Framework/Agent connects
to the “leader”

20

ZKZKZK

Mesos
Master

Mesos
Master

Mesos
Master

Watch

Watch Hold

Connect

Mesos Agents
/ Frameworks

What about Replicated Log?

Replicated Log lets you create replicated fault-tolerant
append-only logs. The Mesos master uses Replicated Log to store
cluster state in a replicated, durable way.

21

Mesos HA: Replicated Log

● Each replica registers its pid
into ZK and maintain the
presence.

22

ZKZKZK

Replica

Replica

Register & hold

Register & hold

Mesos HA: Replicated Log

23

● Each replica registers its pid
into ZK and maintain the
presence.

● When new replica joins the
cluster, existing ones get
notified and get to know the
pid of new replica.

ZKZKZK

Replica

ReplicaReplica

Notified with info
of new replica

register
Notified with info
of new replica

Mesos HA: Replicated Log

24

● Each replica registers its own
pid into ZK and maintain the
presence.

● When new replica joins the
cluster, existing ones get
notified and get to know the
pid of new replica.

● Every replica knows all nodes
in the cluster and do Paxos.

ZKZKZK

Replica

ReplicaReplica

Paxos

Paxos

Paxos

Replacing
Zookeeper

25

? = ZK Etcd Consul|||| ...

ZKZK?

Mesos
Master

Mesos
Master

Mesos
Master

leader

Distributed
KV Store

● Master Contender for leader election

Three Key Components

26

ZKZK?

Mesos
Master

Contender

Distributed
KV Store

bool contend();

● Master Contender for leader election

● Master Detector for discovery

Three Key Components

27

ZKZK?

Mesos
Master

ContenderDetector

Distributed
KV Store

bool contend();

MasterInfo detect(MasterInfo previous);

● Master Contender for leader election

● Master Detector for discovery

● PIDGroup for initialization

Three Key Components

28

bool contend();

MasterInfo detect(MasterInfo previous);

void initialize(pid_t pid); ZKZK?

Mesos
Master

ContenderDetector PIDGroup

Distributed
KV Store

A Case for Modularization!

29

● Already a clear-cut interfaces between:
○ Master and Contender
○ Agent and Detector
○ Framework and Detector

● For new distributed KV store
implementation, we just write the
module without having to modify Mesos
itself! ZKZK?

Mesos
Master

ContenderDetector PIDGroup

Distributed
KV Store

Let’s Talk about
Modules!

30

Mesos
Modules

● Module/Plugin/Extension
● Add/replace a Mesos component

○ Isolators
○ Authenticators
○ …

● Hook modules:
○ Listen to interesting events
○ Modify/enhance certain code paths
○ Prepare/enhance task environment
○ ...

31

● Compiled as shared libraries
○ E.g., libmesos_network_overlay.so

● Specified when launching Master/Agent/Framework
mesos-agent.sh <master-parameters>

 --modules=file:///path/to/modules.json

 --isolation=”my_isolator”

● Gets loaded during initialization
○ E.g., the ”my_isolator” isolator will be loaded into the Agent to

provide task isolation

How are Modules Used?

32

Community Modules

33

I just wrote a Mesos module that provides a really cute feature.

How do I make it useful for others!

Modules are Tricky!

34

● Developing
● Building
● Testing
● Using
● Hosting

● How can we make it all better for community?

Writing Modules

● Doesn’t require intimate Mesos knowledge
○ Just the details of the subsystem being implemented (e.g., Isolators)

● Familiarity with Mesos model is required
○ E.g., libprocess, events, futures and promises, etc.

● Closely tied with Mesos version
○ To ensure mutual compatibility

35

Building Modules: Issues

● Build Mesos first!
○ Install all Mesos dependencies
○ Takes a long time to build
○ Version dependencies

36

Building Modules: Good News!

● Starting Mesos 1.0 release, pre-compiled Mesos deb/rpm packages
contain everything needed to build modules

37

Testing Modules

38

I just wrote a simple Mesos module that provide a cute feature
and I know how to build it!

Can I write unit tests for it?

Testing Modules

● Key questions:
○ How to get good test coverage?
○ How can we solicit help from community?

● Good news!
○ Efforts on the way to create a “libmesos_test” library that can be used to

create/run gmock style tests just like with Mesos itself.

39

How do we, as a community, make third-party modules available for
general consumption?

While making sure the developers and consumers can seamlessly
test/integrate into their environments!

Community-Driven Modules

40

Community Modules: Proposal

● A central registry that contains pointers:
○ E.g., github.com/mesos/modules
○ Each module (or a set of related modules) in its own repository

● Make Mesos version-specific binary rpm/deb modules available
○ E.g., lib_my_module_<module-version>_<mesos_version>.so

41

https://github.com/mesos/modules

Module CI: Coming Soon!

● Builds binary packages for every registered module
○ Across a given set of Mesos versions
○ Work-in-progress!

● Automatic build/testing for upcoming Mesos release
○ Catch incompatibilities sooner!

● Run tests!

42

Let’s take a look at
Etcd!

43

Etcd:
A Distributed
KV Store

● HTTP API (no language bindings)
● May already exist in your environments

44

Etcd in a Mesos Cluster

45

● Create Etcd-specific modules for:
○ Master detector
○ Master Contender
○ PIDGroup

● No need to modify/rebuild Mesos

ZKZK

Mesos
Master

ContenderDetector PIDGroup

Distributed
KV Store

Etcd

Again, it’s all about having options!

46

● Chocolate

● Strawberry

● Vanilla

● ...

Again, it’s all about having options!

47

● Chocolate
Zookeeper

● Strawberry
Etcd

● Vanilla
Consul

● ...

Demo!

48

Module CI:
A Glimpse!

49

Acknowledgments!

● Shuai Lin
● Cody Maloney
● Benjamin Hindman
● Joseph Wu

50

Thanks!

51

● Etcd modules:
○ https://github.com/guoger/mesos-etcd-module/tree/1.1.x
○ https://github.com/guoger/mesos/tree/pid-group-on-1.1.x

https://github.com/guoger/mesos-etcd-module/tree/1.1.x
https://github.com/guoger/mesos-etcd-module/tree/1.1.x
https://github.com/guoger/mesos-etcd-module/tree/1.1.x
https://github.com/guoger/mesos/tree/pid-group-on-1.1.x
https://github.com/guoger/mesos/tree/pid-group-on-1.1.x

