
Ed Harrison and Neil Jerram
Christos Kozyrakis, Spike Curtis, Kapil Arya, Dan Osborne,

Connor Doyle, Niklas Nielsen, Tarak Parekh, Alex Pollitt

Mesos Networking 

with Project Calico



The State of Mesos Networking

Containers share the slave agent’s IP address

Containers can use any port on the agent

Service discovery using per-agent proxies

localhost:8888 on any agent redirects to a specific service



This was OK Initially

For clusters where 

– a single framework manages all services

– there are only a few, long-running services

– there is a single version of each service



But it’s Problematic Now

For clusters where

– services are launched by tens of frameworks

– there are thousands of services with high churn 

– multiple version of each service 

prod/test/dev, US/EMEA/Asia, … 



Problem #1: Port Conflicts

If two apps want to use same port on an agent one fails to start

Alternative: port isolator enforces non-overlapping port ranges

 service discovery problem for the app that does not get standard port

Alternative: bridged networking

 service discovery problem for the app behind the bridge



Problem #2: No Isolation

How do we stop a test app from connecting with a prod app? 

How we isolate different users, services, or divisions? 

How do we stop DoS attacks within the cluster?



Problem #3: Service Discovery

How do multiple frameworks manage proxy settings?

How do clients know which version of a service is at each port?

Do we update the proxies in 10K agents every time a service starts?



This makes no sense…



Mesos Networking Redux

Per-container IP addresses

Routable within and, if needed, outside the cluster

No port conflicts 

Network isolation
Based on coarse-grain or fine-grain security policies

DNS-based service discovery
Discovery using hostnames (A & SRV records, HTTP interface)



Implementation

One feature set, many pluggable implementations
Different network virtualization technologies (L2 or L3)

Different IP address management schemes

Different DNS servers

First implementation based on Project Calico

L3-based network virtualization & isolation

Simple, scalable, open-source





IP

Service

Router

Router

Router

BGP BGP

IP

Service

IP

Service

IP

Service

IP

Service

IP

Service

IP

Service

IP

Service

Build the DC network like the Internet



IP

Service

Router

Router

Router

BGP BGP

IP

Service

IP

Service

IP

Service

IP

Service

IP

Service

IP

Service

IP

Service

Mesos Agent

Build the DC network like the Internet

Mesos Agent



Mesos Agent

Executor Namespace

Root Namespace

eth0

eth0 cali34

192.168.0.45

10.0.0.1

Executor Namespace

eth0 cali89

10.0.0.2

Linux Kernel Routing
(you already have this!)
default via 192.168.0.1 dev eth0 
192.168.0.0/24 dev eth0  src 10.0.2.15  
10.0.0.1/32 dev cali34 scope global
10.0.0.2/32 dev cali89 scope global
10.0.1.40/32 via 192.168.0.29 dev eth0
10.0.2.53/32 via 192.168.0.131 dev eth0

veth pair (kernel version 2.6.24+)

Containers on 
other agents

IP

Calico Data Plane

Containers on 
this agent



Mesos Agent

Executor Namespace

Root Namespace

eth0

eth0 cali34

192.168.0.45

10.0.0.1

Executor Namespace

eth0 cali89

10.0.0.2

IP

Linux Kernel Filtering (iptables)
(you already have this!)

Per-container distributed 
firewall

Calico Data Plane



Mesos Agent

Executor Namespace

Root Namespace

eth0

eth0 cali34

192.168.0.45

10.0.0.1

Executor Namespace

eth0 cali89

10.0.0.2

IP

Felix

Route
ReflectorBGP

Client

Calico Control Plane



Mesos – Calico Integration

NetworkInfo protobuf

Networking isolator 

Calico IP address management – IPAM (plug-in)

Calico network virtualizer (plug-in) 

Master cleanup module 



Update 

task state

Networking Workflow

Plug-in (Calico)AgentMasterFramework

IPAM

Network
virtualizer

Get IP

Isolator
module

Isolate (IP, policy)

Cleanup
module

Launch task (NetworkInfo)
Launch task (NetworkInfo)

Task update (NetworkInfo)

Task update 
(NetworkInfo)

Mesos module

Network plug-in



message NetworkInfo {
enum Protocol {

IPv4 = 1;
IPv6 = 2;

}
optional Protocol protocol = 1;

// Requested IP or assigned IP (on task update)
optional string ip_address = 2;

// Network isolation group.
repeated string groups = 3;

// To tag certain metadata to be used by Isolator/IPAM, e.g., rack, etc.
optional Labels labels = 4;

};

NetworkInfo protobuf



Mesos-DNS

Mesos
Master

Agent Agent Agent Agent Agent…

Mesos
DNS

① Watch ZK for
master changes

② Pull task state
Generate DNS records

③ DNS & HTTP
based discovery

nginx_prod.marathon.mesos  10.13.17.95

_nginx_prod._tcp.marathon.mesos 10.13.17.95:8181



Networking Demo

Mesos cluster with 2 slaves agents

Launching 4 probe tasks

Each probe listens to port 9000 

Each probe tries to reach all other probes

We want all 4 to launch successfully (no port conflicts)

We want to isolate them into two groups of 2 probes



Networking Demo



Roadmap

Code release (Mesos 0.25)

Integration with Mesosphere DCOS

Interfaces for coarse-grain and fine-grain isolation policies

Other plug-in implementations

Flexible task naming in Mesos-DNS

Network QoS



Summary

Mesos networking features

Per-container IP addresses

DNS-based service discovery

Network isolation

1st implementation using Project Calico 

Try it and contribute!



References

https://mesosphere.com/

http://www.projectcalico.org/

https://github.com/mesosphere/net-modules

https://github.com/mesosphere/mesos-dns

http://www.projectcalico.org/
http://www.projectcalico.org/
https://github.com/mesosphere/net-modules
https://github.com/mesosphere/mesos-dns

