
Mesos at Yelp: Building a
production ready PaaS

Rob Johnson
robj@yelp.com/@rob_johnson_

- Rob Johnson
- Operations Team at Yelp
- Spend most of my time working on PaaSTA

Who Am I:

Yelp’s Mission:
Connecting people with great

local businesses.

Yelp Stats:
As of Q2 2015

83M 3268%83M

PaaSTA

Yelp’s homegrown Platform-
as-a-Service

What’s the problem we’re
trying to solve here?

- Yelp’s monolith is ~3 million
LoC (that’s just the Python).
*

- Increasing number of
developers.

*as of 28/09/2015

- Code deployments become
increasingly difficult to
coordinate.

- Surface area for impact of a
bug greatly increases.

What’s the solution?

SOA

Solves everything, right?

SOA: Round 1

- Statically defined list of
hosts to deploy a service
on.

- Operations handle deciding
which hosts to deploy to.

- Manually configure Nagios
for each service.

- Manual deployment
system. Lots of rsync
wrappers to push code
around.

This doesn’t scale
well.

PaaSTA

- Built on the shoulders of
established tools.

- ‘Glue Code’ that
coordinates these tools.

Components

Mesos

Marathon

Chronos

(almost)

My work here is done, right?

Not Quite.

Services !=
Production

What makes a service
production ready?

- easy deployment for
developers

- easy deployment for
developers

- discovery

- easy deployment for
developers

- discovery
- monitoring

- easy deployment for
developers

- discovery
- monitoring
- highly available

- easy deployment for
developers

- discovery
- monitoring
- highly available
- operational support

- easy deployment for
developers

- discovery
- monitoring
- highly available
- operational support

Services at Yelp tend to be:

- http api
- Python
- uWSGI

We want to be stack
agnostic; developers
shouldn’t be constrained by
dependencies on a server.

- PaaSTA only runs Docker
containers.

- Developers own the

creation of the image.

PaaSTA currently has Java,
Golang and Python apps in
production.

PaaSTA provides tooling to
automate the build and
deployment of images via
Jenkins.

PaaSTA uses Git as its
control plane.

git push

make itest

push to registry

performance check

deploy to dev

(repeat for each dev env)

manual intervention

prod

Once a given image is
marked for deployment in
production, PaaSTA
‘bounces’ the app, gracefully
upgrading the version.

- Reduces operational
overhead of deploying
service.

- Removes bottleneck of
going through operations
to deploy.

- easy deployment for
developers

- discovery
- monitoring
- highly available
- operational support

Smartstack

- Originally written by Airbnb
- Yelp now has maintainers

working on it.

s2s1 s3 s4
s2s1 s3 s4

s2s1 s3 s4

H H

H

S N NS

S N

ZK

s2s1 s3 s4
s2s1 s3 s4

s2s1 s3 s4

H H

H

S N NS

S N

ZK

s2s1 s3 s4
s2s1 s3 s4

s2s1 s3 s4

H H

H

S N NS

S N

ZK

s2s1 s3 s4
s2s1 s3 s4

s2s1 s3 s4

H H

H

S N NS

S N

ZK

There’s no place like
127.0.0.1
169.254.255.254

Why Smartstack?

- ZK/synapse/nerve dying
doesn’t wipe us out.

- HAProxy has its own health
checking system we can fall
back to.

- HAProxy is a proven load
balancer and http proxy.

- We can use Smartstack with
non-PaaSTA services.

Zero-downtime HAProxy
reloads:

http://bit.ly/1RsctGi

http://bit.ly/1RsctGi
http://bit.ly/1RsctGi

- easy deployment for
developers

- discovery
- monitoring
- highly available
- operational support

- API allows us to send event
data.

- Flexibility to assign alerts to
service authors, rather
than forcing it on
operations team.

$ cat monitoring.yaml

--

team: search_infra

notification_email: search@yelp.com

page: true

runbook: 'y/rb-myservice'

alert_after: 5m

realert_every: 10m

tip: 'The federator service is in the critical path for

search, you should be fixing this'

./check_marathon_services_replication

./check_hung_setup_marathon_jobs

- easy deployment for
developers

- discovery
- monitoring
- highly available
- operational support

Yelp organises machines into
latency zones.

Superregion
Region
Habitat

$ cat smartstack.yaml

main:

 advertise: [superregion]

 discover: superregion

 proxy_port: 20603

By choosing a more specific
latency zone, service owners
optimize for RTT over
availability.

- By being aware of these latency
zones, PaaSTA can make smarter
decisions on how to constrain
applications.

Without this coupling,
Marathon wouldn’t balance
apps evenly amongst the
latency zones.

- easy deployment for
developers

- discovery
- monitoring
- highly available
- operational support

PaaSTA comes with a cli for
managing PaaSTA services.

- easy deployment for
developers

- discovery
- monitoring
- highly available
- operational support

Questions?

@YelpEngineering

YelpEngineers

engineeringblog.yelp.com

github.com/yelp

