VAVAV

&

docker appc
MESOS & CONTAH\IERS

Yan ><u y XUjyan

http://twitter.com/xujyan

WHAT IS A CONTAINER

oosely defined: a lightweight “VM" / O5-level

ViR lization /| chroot on steroids”.

» Jo Mesos: a per-task/executor isolated execution
environment.

DIMENSIONS OF
CONTAINERIZATION

* Performance isolation: resource quota limrting.

e.g. mem Isolation.

* Isolated visibility from inside the container: stack
separation, jailing. e.g., filesystem isolation.

* Visibility from the host: inspection, metrics.

p—

et ki 169 |480881 A
L«] ” 5 - - =
s - a| ‘s“

p—d

e !
Jiw Credit: http://cgadiginemicalgeem/wp-content/uploads/2014 QifEetolia-Oleksiy-Mark-500481 32 ISUBIEM B0

R=FRF = IR RRRL —r | A g =

S @ NESINERIZATION: A" CORERRENIS EXE
MIESOE =S GIG NG M VAINVAG =M =N 1T

@ b iallecate resolreces witholUt enfercemichiE

http://cdn.diginomica.com/wp-content/uploads/2014/07/Fotolia-Oleksiy-Mark-50048132_Sub_M.jpg

A BRIEF HISTORY OF MESOS
CONTAINERIZATION

X (2010)
» Cgroups (2012)

* Linux namespaces (201 3)

g blocker™ (2014)

« Meso

THE TALE OF TWO
CONTAINERIZERS

sContainerizer

(default)

g Ena

 DockerContainerizer

mically chosen

hased on Containerinfo

T both are specified via

B et inerizers.

Agent

Mesos

Docker

Containerizer Containerizer

Isolators

Docker

Custom
executor

Docker
executor

EURRENT MESCHS
CONTAINERIZER LINEUP

* Performance isolation

* cpu, mem, disk quota, network egress bandwidth
* Isolated visibility from inside

* pid, network (port mapping)
* Visibility from the host

* perf_event, other cgroup stats and network stats, etc.

POCKER IS GREAT, BUSS

* Requires Docker Installation and maintenance.

» lasks die with Docker daemon (upgrade, etc.)

» Limrted performance isolation done by Mesos.

» Cannot compose with Mesos isolators (disk guota, port mapping).
« Complexity In managing task lifecycle.

» Hard to take advantage of other Mesos features: disk quota
enforcement with persistent volumes; IP per container, etc.

A UNIVERSAL MESOS
CONTAINERIZER

* An all-encompassing containerizer for performance

isolation, visibility isolation and metering.

- Compossible: each isolation 1s iImplemented as an Isolator

and configured independently.

- Container resources are mutable during container lifecycle.

ightly integrated with Mesos task/executor.

MESOS CONTAINERIZER

e Bocker thing
filesystem isolation.

Extensible: new Isolators
such as are added and
configured independently.

Filesystem isolator also
handles cases without a
new rootfs.

Containerizer

Network CPU
|solator |solator
— —

PID Isolator Mem
Isolator
— —
PerfEvent DiskQuota
|solator |solator
—

Isolator

CONTAINERIZER

* Recovery: agent crash
tolerance.

- Update: grow and shrink
container as needed.

» Usage: container statistics.

* Walt: tied to executor
Ifecycle.

Containerizer

recover ()
launch()
update()
usage()
wait()
destroy()

DOEATOR

B iendre set Up container
isolation feature. e.g,, create
Cgroups.

» [solate: 1solate the process.
S hite control tiles.

« Woatch: enforce isolation,
report violation.

Isolator

recover|()
prepare()
isolate()
watch()
update()
usage()
cleanup()

&

docker

BUSES TS

appC

EIM PREMS I OIN NG /AN

DES @IS

|[ON

EUIN TAINER SPESS

AN R

* Filesystem contents: rootfs(es)
» Manifest / static configuration: docker

S slon, dependencles, etc.

- Mounts points

@ Boicny, cmd, arss, etc. appc

EUIN TAINER SPESS

@ @ (Rl

* Runtime configuration

&

e hooks docker

* mounts (volumes)

e Resources: cpus, appc

mem, disk, etc.

FILESYSTEM ISOLATION

« With a new rootfs.

» Decoupling from the host filesystem allow better application portability and
infrastructure flexibility.

- Without a new rootfs.
 Volumes isolated inside the container mount namespace.

» Mesos allows volume sources to be container images so the framework executor Is
not jalled but It can isolate rts end-user logic inside a container rootfs.

 Other aspects of isolation

* Mounting <work_dir>/tmp as /tmp.

FILESYSTEM PROVISIONING

* A universal provisioner Filesyster Isolator

for multiple images types.

Provisioner

* Vendor specific store Sackon Sore
which does discover,

| . Copy Appc
fetching and processing. | Backend | St
Bind Docker
B | Backend Store

* Provision rootfs (e.g., via
Overlay OCF
Diﬂd moun-t) Backend Store

SAMPLE CONTAINER INFO

{
"type" : "MESOS",
"mesos" : {
"image" : {
"type" : "APPC",
"appc" : {
"name" : "acme.biz/appc/ubuntul510",
"labels"” : {
"labels": [{"key" : "version", "value" : "0.0.1"}]
}
}
}
b

"volumes": |
{"container path" : "/tmp", "host path" : "tmp", "mode" : "RW"},
{"container path" : "/root", "host path" : "/root", "mode" : "RW"},
{"container path" : "/etc", "host path" : "/etc", "mode" : "RO"},
{"container path" : "/var/run", "host_path" : "/var/run", "mode" : "RW"},
{"container path" : "/var/tmp", "host_ path" : "/var/tmp", "mode" : "RW"}

L work_dir store

= slaves — docker
—1 — appc
— container_id | images/
Image_id
— provisioner
— manifest
| containers/
container_id — rootfs
| backends/
backend
| rootfses/

rootfs_id

‘ store \

— docker
— appc

fetch, images/

decrypt, image_id
decompress, -

AL — manifest

etc. e
— rootfs

‘ work_dir store

— slaves — docker

— — appc

iImages/
Image_id

— container id

— provisioner

— manifest

|| containers/ | /mnt{mesos/sandbox
container_id

— rootfs

backends/
backend

rootfses/
rootfs id

‘ work_dir

slaves

store

docker

appc

container _id

sand

provisioner

images/
image_.id

nt/mesos/sapdbox/sand

containers/
container _id

/mnt

esos/sandbox

manifest

rootfs

backends/
backend

volumes

roles/role

rootfses/
rootfs_id

me

/var/tmp

/mn¥/mesos/sandbox/vol

persistence_id

~

Credit: http://www.seanews.com.tr/news/127373/forwarders-freight/

CONTAINERIZE A LARGE FLEE]

s

http://www.seanews.com.tr/news/127373/forwarders-freight/

CONTAINERIZE YOUR
EXISTING CLUSTERS

» Tight coupling with the host accumulated over time.

- Start with a default container image identical to the host
environment: fat iImages.

» Decouple tasks from the host environment: shrink the images;
make tasks self-sufficient.

- Update the host environment independently from the containers.

» Separate environment into (a limited number of) image layers.

DECOUPLING DEPENDENCIES

» Software binary dependencies
* |deally containers are self-sufficient.
» Configuration dependencies

* |deally configuration are pulled from a service and not the host, but may have to bind
mount from the host as a compromise.

* How to push realtime configuration change down to each container without mounting
in host config!

* How many layers should there be!?

* |deally as few as possible and different logical layers managed by teams who own them.

PITFALLS DURING MIGRATION

* Applications rely on host environment (other than

aforementioned binaries and configs), e.g.,, working

directory path.

* Host services rely on information from “the contained
application’s view', e.g,, /proc/<pid>/cwd, etc.

« Software binaries in the container don't match

configuration from the host.

IMAGE IDENTIFICATION &
VERIFICATION

» [he curse of the ‘latest tag/version: Is latest’ latest?

* You don't know If the iImage has changed until you've
pulled it down (ETag helps).

» Use image |ID for preciseness and immutabllrty.

» Scenario: Emergency release of base image after
fixing a zero-day vulnerabllity.

IMAGE PROVISIONING
SCALABILITY

» Upgrade default image for O(10000) hosts.

* Images of GBs in size.

bV

il

« Network bandwiath.

nat to do about tasks when the default image Is

being fetched!

v iERE | O GO FROM FiENS

» Persistent container filesystems.

» What are the high-level abstractions for managing
and utilizing containers! Pods!

e lipport OCF standard.

« Make sure containerization work with Mesos features:
oversubscription, IP per container, etc.

EPHEMERAL VS, PERSISTENT
CONTAINERS

» Copy-on-write filesystem: overlays

 Ephemeral read-only container filesystem: no top-layer;
read-only rootfs with sandbox mounted In.

» Ephemeral writable container filesystem: top layer from
sandbox.

* Persistent writable container filesystem: top layer from
persistent volumes.

CONCLUSION

* Mesos Is by far and away the most proven scalable and
production-ready way to manage your containers.

* Filesystem isolation I1s only one element of it and there
s cost and benetfits with It.

* Not everything needs to run inside a new rootfs and
you can still reap the benefits of other types of
containerization even If you don't.

CONCLUSION

» Still, migrating towards separate container filesystems
S a good strategy for many organizations.

* Filesystem provisioning and isolation is WIE will be
released In the next couple of months.

» Mesos Is not a container scheduler; it provides high-

EYElNGllisier APls and abstracts resolrees irembnesiE

Containerization serves this goal.

b
5

<
S
SKISK

%

>

o

ACKNOWLEDGEMENTS

Contributors of the native filesystem isolation feature: Lily Chen, Tim
Chen, lan Downes, Jojy Varghese, Mel Wan, Yan Xu, Jie Yu, Chi Zhang.

AVAVA

QUESTIONS!

