
MESOS & CONTAINERS
Overview of Mesos containerization and upcoming filesystem isolation

support (a.k.a the docker like thing)
Yan Xu !xujyan

http://twitter.com/xujyan

WHAT IS A CONTAINER

• Loosely defined: a lightweight “VM” / OS-level
virtualization / “chroot on steroids”.

• To Mesos: a per-task/executor isolated execution
environment.

DIMENSIONS OF
CONTAINERIZATION

• Performance isolation: resource quota limiting.
e.g. mem isolation.

• Isolated visibility from inside the container : stack
separation, jailing. e.g., filesystem isolation.

• Visibility from the host: inspection, metrics.

CONTAINERIZATION: A CORE PREMISE OF
MESOS RESOURCE MANAGEMENT

Can’t allocate resources without enforcement!

Credit: http://cdn.diginomica.com/wp-content/uploads/2014/07/Fotolia-Oleksiy-Mark-50048132_Sub_M.jpg

http://cdn.diginomica.com/wp-content/uploads/2014/07/Fotolia-Oleksiy-Mark-50048132_Sub_M.jpg

A BRIEF HISTORY OF MESOS
CONTAINERIZATION

• LXC (2010)

• Cgroups (2012)

• Linux namespaces (2013)

• Docker* (2014)

THE TALE OF TWO
CONTAINERIZERS

• MesosContainerizer
(default)

• DockerContainerizer

• Dynamically chosen
based on ContainerInfo
if both are specified via
--containerizers.

Mesos
Containerizer

Docker
Containerizer

Agent

Docker
Isolators

Isolators
Isolators

Custom
executor

Docker
executor

CURRENT MESOS
CONTAINERIZER LINEUP

• Performance isolation

• cpu, mem, disk quota, network egress bandwidth

• Isolated visibility from inside

• pid, network (port mapping)

• Visibility from the host

• perf_event, other cgroup stats and network stats, etc.

DOCKER IS GREAT, BUT...
• Requires Docker installation and maintenance.

• Tasks die with Docker daemon (upgrade, etc.)

• Limited performance isolation done by Mesos.

• Cannot compose with Mesos isolators (disk quota, port mapping).

• Complexity in managing task lifecycle.

• Hard to take advantage of other Mesos features: disk quota
enforcement with persistent volumes; IP per container, etc.

A UNIVERSAL MESOS
CONTAINERIZER

• An all-encompassing containerizer for performance
isolation, visibility isolation and metering.

• Compossible: each isolation is implemented as an Isolator
and configured independently.

• Container resources are mutable during container lifecycle.

• Tightly integrated with Mesos task/executor.

MESOS CONTAINERIZER

• “The Docker thing”:
filesystem isolation.

• Extensible: new isolators
such as are added and
configured independently.

• Filesystem isolator also
handles cases without a
new rootfs.

CPU
Isolator

Mem
Isolator

DiskQuota
Isolator

Network
Isolator

PID Isolator

PerfEvent
Isolator

Containerizer

Filesystem
Isolator

…
Isolator

CONTAINERIZER

• Recovery: agent crash
tolerance.

• Update: grow and shrink
container as needed.

• Usage: container statistics.

• Wait: tied to executor
lifecycle.

recover()
launch()
update()
usage()
wait()
destroy()

Containerizer

ISOLATOR

• Prepare: set up container
isolation feature. e.g., create
cgroups.

• Isolate: isolate the process.
e.g., write control files.

• Watch: enforce isolation,
report violation.

recover()
prepare()
isolate()
watch()
update()
usage()
cleanup()

Isolator

FILESYSTEM PROVISIONING AND ISOLATION

CONTAINER SPECS
What’s in it

• Filesystem contents: rootfs(es)

• Manifest / static configuration:

• Version, dependencies, etc.

• Mounts points

• App: env, cmd, args, etc.

CONTAINER SPECS
How to run it

• Runtime configuration

• hooks

• mounts (volumes)

• Resources: cpus,
mem, disk, etc.

FILESYSTEM ISOLATION
• With a new rootfs.

• Decoupling from the host filesystem allow better application portability and
infrastructure flexibility.

• Without a new rootfs.

• Volumes isolated inside the container mount namespace.

• Mesos allows volume sources to be container images so the framework executor is
not jailed but it can isolate its end-user logic inside a container rootfs.

• Other aspects of isolation

• Mounting <work_dir>/tmp as /tmp.

FILESYSTEM PROVISIONING
• A universal provisioner

for multiple images types.

• Vendor specific store
which does discover,
fetching and processing.

• Provision rootfs (e.g., via
bind mount).

Copy
Backend

Backend

Bind
Backend

Overlay
Backend

Store

Appc
Store

Docker
Store

OCF
Store

Provisioner

Filesystem Isolator

SAMPLE CONTAINER INFO

{
 "type" : "MESOS",
 "mesos" : {
 "image" : {
 "type" : "APPC",
 "appc" : {
 "name" : "acme.biz/appc/ubuntu1510",
 "labels" : {
 "labels": [{"key" : "version", "value" : "0.0.1"}]
 }
 }
 }
 },
 "volumes": [
 {"container_path" : "/tmp", "host_path" : "tmp", "mode" : "RW"},
 {"container_path" : "/root", "host_path" : "/root", "mode" : "RW"},
 {"container_path" : "/etc", "host_path" : "/etc", "mode" : "RO"},
 {"container_path" : "/var/run", "host_path" : "/var/run", "mode" : "RW"},
 {"container_path" : "/var/tmp", "host_path" : "/var/tmp", "mode" : "RW"}
]
}

work_dir

slaves

provisioner

…

container_id

containers/
container_id

backends/
backend

rootfses/
rootfs_id

store

docker

appc

images/
image_id

manifest

rootfs

registry

acme.biz

appc

mysql57-0.0.1-linux-amd64.aci

ubuntu1510-0.0.1-linux-amd64.aci

store

docker

appc

images/
image_id

manifest

rootfs

fetch,
decrypt,

decompress,
untar,
etc.

work_dir

slaves

provisioner

…

container_id

containers/
container_id

backends/
backend

rootfses/
rootfs_id

store

docker

appc

images/
image_id

manifest

rootfs
/mnt/mesos/sandbox

/

/var/tmp

work_dir

slaves

provisioner

…

container_id

containers/
container_id

backends/
backend

rootfses/
rootfs_id

store

docker

appc

images/
image_id

manifest

rootfs/mnt/mesos/sandbox

/

volumes

roles/role

persistence_id

/mnt/mesos/sandbox/vol

/var/tmp

sand

/mnt/mesos/sandbox/sand

CONTAINERIZE A LARGE FLEET

23

Credit: http://www.seanews.com.tr/news/127373/forwarders-freight/

http://www.seanews.com.tr/news/127373/forwarders-freight/

CONTAINERIZE YOUR
EXISTING CLUSTERS

• Tight coupling with the host accumulated over time.

• Start with a default container image identical to the host
environment: fat images.

• Decouple tasks from the host environment: shrink the images;
make tasks self-sufficient.

• Update the host environment independently from the containers.

• Separate environment into (a limited number of) image layers.

DECOUPLING DEPENDENCIES
• Software binary dependencies

• Ideally containers are self-sufficient.

• Configuration dependencies

• Ideally configuration are pulled from a service and not the host, but may have to bind
mount from the host as a compromise.

• How to push realtime configuration change down to each container without mounting
in host config?

• How many layers should there be?

• Ideally as few as possible and different logical layers managed by teams who own them.

PITFALLS DURING MIGRATION
• Applications rely on host environment (other than

aforementioned binaries and configs), e.g., working
directory path.

• Host services rely on information from “the contained
application’s view”, e.g., /proc/<pid>/cwd, etc.

• Software binaries in the container don’t match
configuration from the host.

IMAGE IDENTIFICATION &
VERIFICATION

• The curse of the ‘latest’ tag/version: is ‘latest’ latest?

• You don’t know if the image has changed until you’ve
pulled it down (ETag helps).

• Use image ID for preciseness and immutability.

• Scenario: Emergency release of base image after
fixing a zero-day vulnerability.

IMAGE PROVISIONING
SCALABILITY

• Upgrade default image for O(10000) hosts.

• Images of GBs in size.

• Network bandwidth.

• What to do about tasks when the default image is
still being fetched?

WHERE TO GO FROM HERE
• Persistent container filesystems.

• What are the high-level abstractions for managing
and utilizing containers? Pods?

• Support OCF standard.

• Make sure containerization work with Mesos features:
oversubscription, IP per container, etc.

EPHEMERAL VS. PERSISTENT
CONTAINERS

• Copy-on-write filesystem: overlays

• Ephemeral read-only container filesystem: no top-layer ;
read-only rootfs with sandbox mounted in.

• Ephemeral writable container filesystem: top layer from
sandbox.

• Persistent writable container filesystem: top layer from
persistent volumes.

CONCLUSION
• Mesos is by far and away the most proven scalable and

production-ready way to manage your containers.

• Filesystem isolation is only one element of it and there
is cost and benefits with it.

• Not everything needs to run inside a new rootfs and
you can still reap the benefits of other types of
containerization even if you don’t.

CONCLUSION
• Still, migrating towards separate container filesystems

is a good strategy for many organizations.

• Filesystem provisioning and isolation is WIP, will be
released in the next couple of months.

• Mesos is not a container scheduler ; it provides high-
level cluster APIs and abstracts resources from hosts.
Containerization serves this goal.

ACKNOWLEDGEMENTS
Contributors of the native filesystem isolation feature: Lily Chen, Tim
Chen, Ian Downes, Jojy Varghese, Mei Wan, Yan Xu, Jie Yu, Chi Zhang.

33

QUESTIONS?

34

