
Serenity
MESOS OVERSUBSCRIPTION MODULE



Szymon Konefał
SOFTWARE ENGINEER

INTEL CORPORATION



Agenda

 Oversubscription Basics

 Oversubscription in Mesos

 Serenity Architecture

 Next steps for Serenity & Mesos



Oversubscription Basics
OVERSUBSCRIPTION FROM MESOS PERSPECTIVE



Oversubscription Basics

 Recycling of reserved but unused resources

 Spinning up revocable („best effort”) tasks

 Throttle or revoke BE tasks when production task needs 

more resources (Quality of Service)

 Goal: Increase overall data center utilization



Oversubscription Basics
RESOURCE ESTIMATOR & BEST EFFORT TASKS

 Exposes Slack Resources to Mesos 

Agent, who passes them to allocator

 Allocator offers Slack Resources to 

Frameworks

 Frameworks which are registered as 

consumers of oversubscribed resources 

can reserve them

 Jobs running on slack resources are 

considered „revocable” 



Oversubscription Basics
QUALITY OF SERVICE & TASK THROTTLING AND REVOCATION

 Throttle best effort tasks when production task needs 
more of it’s isolated compressible resource, eg. cpu 
time

 Revoke best effort tasks when production task needs 
more of a shared resource or non-compressible one

 Competition for shared resource is considered a 
„noisy neighbour” situation

 Shared resources examples: 

L3 CPU cache*

Memory bandwith

* Actually you can isolate that using Intel Cache Allocation Technology ;-)



Oversubscription Modules
POWERED BY YOU



Mesos Oversubscription API 

 Introduced in Mesos 0.23.0

 Defines Resource Estimator and Quality of 

Service controller

 Mesos is shipped with fixed RE and stubbed QoS 

controller

 You are expected to provide your own modules, 

if you want to use oversubscription features



Mesos Oversubscription API 
RESOURCE ESTIMATOR

class ResourceEstimator

{

public:

virtual Try<Nothing> initialize(

const lambda::function<process::Future<ResourceUsage>()>& usage) = 0;

virtual process::Future<Resources> oversubscribable() = 0;

};



Mesos Oversubscription API 
QOS CONTROLLER

class QoSController

{

public:

virtual Try<Nothing> initialize(

const lambda::function<process::Future<ResourceUsage>()>& usage) = 0;

virtual process::Future<std::list<QoSCorrection>> corrections() = 0;

};



Mesos Oversubscription API 
FRAMEWORK

 Framework needs to register with 

REVOCABLE_RESOURCES capability set



Serenity Architecture
POWER OVERWHELMING



Serenity Architecture

 Flexible solution with 

interchangeable components

 Estimation and correction is done in 

pipeline approach

 Filters inside pipelines smoothen, 

shape and transforms the input

 Open source on Github

https://github.com/mesosphere/serenity



Serenity Architecture

 Pipeline can consists of different components:

 Input smoothing: Exponential Moving Average filter

 Input shaping: PR-executor pass filter, Ignore new 
executors

 Interference signal indicator: Changepoint detector

 Flow control: Valve filter, Utilization threshold

 Slack Resource Estimator – estimates slack

 QoS Controller – decides, which BE tasks need to be 
revoked



Resource Estimator Pipeline



Serenity Quality of Service

 We look at HW performance counters of 

production tasks to identify Noisy Neighbour 

situation

 QoS Controller revokes BE tasks until HW counters 

returns back to previous values

 To make enviroment more stable during resource 

contention, the QoS controller sends 

StopOversubscription message to RE Valve filter



Serenity & Mesos Future
IN A WORLD OF MAGNETS AND MIRACLES

THERE'S A HUNGER STILL UNSATISFIED



Next steps for Serenity

 Make QoS Algorithms more sophisticated

 Expose Noisy Neighbour situations as a hint for 

schedulers 

Cluster-level Serenity?

 Pipelines drawn & configured in simple config file

 Integrate with Application Performance Metrics



Mesos Environment

 Enable oversubscription features in frameworks

 Enable CPU Set isolator

 Enable Cache Partitioning isolator



What’s left to answer in Mesos?

 How to fully isolate of BE tasks and latency 

critical tasks on CPU level?

 What does it mean, when BE tasks has „4 cpus”?

 How to signal framework that performance of 

tasks is affected?

 What to do with BE jobs, when PR job finishes it’s 

work?



Application 

Performance Metrics
THE NEXT BIG THING



Application Performance Metrics

 Let frameworks report their Service Level 

Indicators (SLIs) and Service Level Objectives 

(SLOs)

 Report global and local cluster performance

 Support in identifying noisy neighbour situation

 Still in design exploration

 Design docs: http://bit.ly/MesosAPM



https://github.com/mesosphere/serenity


