

OFBiz An Insider View

Prepared By:

Basil Argasosy
Senior Computer Engineering Student

King Fahd University of Petroleum & Minerals (K.F.U.P.M)
September 01, 2005

Contact Information

s208603@kfupm.edu.sa
st208603@ccse.kfupm.edu.sa

or through my personal webpage

 1

mailto:s208603@kfupm.edu.sa
mailto:st208603@ccse.kfupm.edu.sa
http://student.kfupm.edu.sa/S208603/

OFBiz : An Insider View

Introduction:

 The OFBiz framework utilizes the common Three-Tier “Layers” Architecture
model in all its applications. It has the Data Layer, the Business “logic” layer, and
the Presentation “user interface” layer. The Data Layer and the Service layer have
their own engines that are responsible for interaction with the layer.

1) Data Model Layer: It represents the database. There is an Entity Engine that is

responsible of this layer that includes database connection, data retrieval, data
storage…etc. It used the java Generic Delegator class to connect with the
database, and it uses the java Generic Value to represent an entity row to be
inserted in the database.

2) Business Logic Layer: It represents the logic, or the services provided to the
user and performed on the data layer "database”. There can be services of many
types like java, SOAP, simple, workflow, etc. and each type of service has its
own handler. There is a Service Engine that is responsible for dealing with
services, calling the service, etc.

3) Presentation Layer: OFBiz has moved to use "Screens" to represent the OFBiz
pages. So, each page should normally be represented as a screen. An OFBiz
page consists of many components like headers, footer, appheader,..etc, so when
rendering the page, these are all combined in the order they were placed, or
included, in the screen.

4) Servlet Container : This is the main servlet that controls all the application
“controller.xml” .The controller defines the event handlers and the view
handler, type of the services, the location of the views..etc. Web.xml is an
important file to configure the main servlet(s) and also to control to tomcat
server.

Figure 1

 2

Practical Overview:

 Before starting to build our new application, let’s have a look inside the
OFBiz. Here is the OFBiz application folder on the C drive.

Figure 2

 3

Having a look inside the OFBiz folder, we would see the following :

Figure 3

 4

These folders are as follows: [1]

.svn folder : contains the weekly update batches for the OFBiz framework and
applications.

applications folder : contains the application components created with OFBiz,
when you create your own application, it should be placed completely in this folder
or the application can be placed in the hot-deploy or the specialized folder.

base folder : contains java classes , xml files and xml schema files, for OFBiz
starting up and configuration.

data folder : contains some files for the database specification.

framework folder : contains the OFBiz framework components , like the Entity
Engine, the Service Engine, the common folder that contains files that is common
for any application..etc.

hot-deploy folder : this folder can also hold some applications , where the
components of these application are loaded automatically without the need for
loading them explicitly as we will see later when looking inside an application.

logs folder : the OFBiz uses the log4j project for its logging System, this folder
contains the log files.

specialized folder : contains some extra applications like “community” and
“wholesale” which are not part of the OFBiz core.

website folder : contains the www.ofbiz.org website html pages.

startofbiz.bat : this file is used to start running the OFBiz.

 5

http://logging.apache.org/log4j/docs/index.html

Now , we would look at an application, so having a look inside the applications
folder :

Figure 4

here are some applications, the accounting application ,the party application, the
the order application, …etc.

 The component-load.xml file is a very important file, because without it, the
OFBiz can not load any application “unless this application is placed in the hot-
deploy folder as mentioned earlier”. Whenever you create a new application, that is
you add a new folder beside these other folders “party, order,…etc” , you need to
tell the OFBiz to load this application, and this is done with the component-
load.xml file. It defines the location for all applications that needs to be loaded
when the OFBiz starts.

 6

Here is the load-component file:

Figure 5

Note : [1]

In OFBiz , any application is placed inside a component, that is the OFBiz deals with componets
that contain one or more applications ,I guess this is why the file is a “load-component” file not
a “load-application” file.

Now we will have a look at an application, we will take the “Accounting
application” as an example , and all the application have the same structure ,
generally.

 7

Case Study : Accounting Application :

 The accounting application holds many smaller applications inside , one of
them is the Agreement . We would go through the three –tiers of this application,
i.e., the Data Layer, The Business Logic Layer and the Presentation Layer and the
Controller.

Figure 6

 8

These folders are as follows : [1]

ofbiz-component.xml : defines this application by specifying where is the location
of its
data model : <entity-resource>
business logic : <service-resource>
web applications <webapp …../> .
It is very important to notice that any entity resource file or service resource file
should be referenced to in the ofbiz-component.xml.

Figure 7

build.xml : as its name states, this file is used to tell the ant program how to build
the OFBiz application.

.svn : contains the weekly updates batches to this application.

build : contains the java compiled codes “.class files “ and the libraries for the
accounting application.

 9

config : used generally for data configuration , an example is , it is used to support
different languages interfaces , inside it you will find some files for different
languages, and based on the user interface language, one of these files will be used.

data : contains the seed data “data loaded when ofbiz starts” and the demo data.

Finally, we are last with the entitydef and the servicedef. For these two we always
have two parts : definition and implementation.

entitydef :

contains the data layer definitions and implementations, i.e. the database relational
tables and their relationships.
Inside this folder , there will always be two main files, one for definition and the
other for implementation.

Figure 8

 10

entitygroup.xml :

 It defines the tables of the database. For example, we have Agreement ,
AgreementAttribue,AgreementItem,AgreementItemAttribute,….etc .
It is strange as we are studying the Agreement applitcaion, which is under the
accounting application , but its definition is located in the entitydef directory of the
party application!. May be it will be moved to the accounting application soon!.
Nevertheless, all the applications follow the same pattern, and even if the
Agreement Entities were taken out from the pary Application and replaced in the
accounting Application it would work exactly the same.

Figure 9

 11

entitymodel.xml :

 It implements these tables that were just defined in the entitygroup.xml, i.e. , it
gives details about their fields, types, relationships, …etc.As an Example, the
Agreement table or Agreement entity:

Figure 10

Note that each filed has a field-type. Field types might differ based on the type of
the database. Thus, based on the database you are using “the default for OFBiz is
the Derby database” you would decide what types to choose for your fields.

 12

To know the different types for the database, you could follow the directory :

C:\ofbiz\framework\entity\fieldtype

Inside , you would see many files, each for a particular database.

Figure 11

 13

Assuming you are using the Oracle database , you would check the
fieldtypeoracle.xml file , as shown below.

Figure 12

Notice that you are not restricted to these type, you can add your own ones, all
what you need to do is to add a new <field-type-def> tag.

For more information about the entity model and entity definition, you can visit :
Entity Model .

 14

http://www.ofbiz.org/docs/entity.html

servicedef :

 It defines the services used in the business “logic” layer, it contains the
services.xml file , which define the services. In our case , the Accounting
application has many sub-applications in it, one of which is the Agreement as
mentioned earlier. Thus, the services file is services_agreement.xml

Figure 13

Important Note :

Whenever you add a new service file , like the service_agreement.xml or any
service definition file, you need to include a reference to it in the ofbiz-
component.xml file “Figure 7”

 15

 Having a look inside this file, service_agreement.xml , we would see the
definition of all the services used by the agreement application.

Figure 14

After defining the services, we need to implement them. Normally, services are
implemented using the OFBiz mini-language. However, if the service cannot be
implemented with “xml” , we can use java to implement it.

 16

script : contains the implementation for the services using the OFBiz mini-
language, and it contains some scripts.
Inside this folder, we will find many subfolders containing the service
implementation for the different accounting subapplications. We are interested in
the Agreement subfolder :

Figure 15

 17

Figure 16

and having a look into this file :

for example. It is implementing the createAgreement service that was defined in
the servicedef , as was shown in Figure 14.

 18

Figure 17

For more Information on how to define services , you can visit :
Service Engine Guide.

src : contains the java source files for the services that were implemented with java.

widget : recently the OFBiz presentation layer pages are defined as
“Screens”.This directory holds "widgets" for the user interface screens. OFBiz
allows the user interface design to be created as "generic screens" rather than just
web pages, so they could be reused eventually for some other platforms. The
widgets/ directory's contents mirror those of the webapp [1]* So, each application
will have its own screens , as so the Agreement application does. Inside this folder,
we would find the AgreementScreens.xml file that defines the Agreement screens.

 19

http://www.ofbiz.org/docs/services.html

In the Figure below, Figure 18 , we would see the AgreementScreens.xml file
among the other applications screens files.

In Figure 19, we will see the findAgreementScreen that allows to search for a
particular agreement.

Figure 18

Screens are divided into two parts : actions and widgets.Actions are responsible for
data retrieval while widgets are responsible for data display.

 20

Figure 19

webapp : contains web application pages and forms . With OFBiz, pages are
divided into smaller pieces which are re-combined to create the final product. Thus,
many pages can share common elements such as page headers, sidebars, and
navigation bars. This is called the "decorator pattern." There is a further separation
of the activities of a page into "actions," such as getting data from a database, and
"presentation," the display of that data to the visitor. [1]*

 21

Figure 20

The basics files/folders in our application are :

Index.jsp : used to redirect the controller to the main page.

main.ftl : The main page for the accounting application, written with FreeMarker
Template Language (FTL) .

includes folder : contains the appheader.ftl file that is common for all the
accounting application .It can also contain some other ftl files if needed to be used
by the application.

error folder : contains the error pages to be displayed when a particular error
occurs.

 22

http://freemarker.sourceforge.net/
http://freemarker.sourceforge.net/

Agreement folder : contains the agreement forms that are used /called by the
agreement screens or agreement ftl files. Here is the findAgreement form as an
example

Figure 21

WEB-INF : the most important directory , it contains very important files and
directories.

-actions folder : has beanshell scripts that are used to process and gather data from
the database .

-web.xml file : discussed earlier.

-controller.xml : Resposible for controlling the coming request .Any request to the
application, wither it is a screen request, service request, event..etc, it should be
passed through the controller.

 23

Inside the controller.xml file :

1) Defining the different handlers for different types of events.

Figure 22

 24

2) Defining the request mapping for the application, it can be a screen “view”
request or a service request , as example : FindAgreement and createAgreement.

Figure 23

 25

3) The controller tells where to look for the requested screen or service .

Figure 24

 26

Demo :

1) Double click on the startofbiz.bat file in the directory C:/ofbiz or :

Figure 25

2) Wait until the OFBiz runs fully, then in the browser type the following :

https://localhost:8443/accounting/control/main

3) A user name and a password are required : the defaults are
 User : admin
 Password : ofbiz

 27

https://localhost:8443/accounting/control/main

Figure 26

 28

Now we are inside the application , the first page will be the main page .
It is obvious! The requested page is the main page, and it is requested from the
controller.

Figure 27

 29

Now we will look for the “main” in the controller.xml file :

Figure 28

the requested map is “main” and when success , this “main” is of type “view”
which means it is a screen, not a service , and its value is “main” .

 30

Then we will search for this view at the end of the controller.xml file, whose value
is “main”

 we will find :

Figure 29

Here it gives the path for the screen. We should follow the path in the page=”….. .
There is a CommonScreen.xml file and inside this file there is a screen called
“main” . “the name after the # symbol is the screen name”.

 31

Now we will follow this screen, we will go to the widget directory inside the
accounting application :

Figure 30

 32

inside the CommonScreen.xml file, we will look for the “main” screen.

Figure 31

This is just a simple start, the structure if the screens will be easier to see in the
coming examples.

Back to the application :

Now, we would visit the Agreements page. If you move the mouse above the
“Agreemnts” tab you would notice that it makes a request to the “FindAgreement”
map of the controller, as shown below.

 33

Figure 32

One click, and you will be forwarded to the FindAgreement page …

Figure 33

 34

How that forwarding happened? We would follow it step by step :

1)Search the controller for the FindAgreement , and again the controller.xml is
here :

 C:\ofbiz\applications\accounting\webapp\accounting\WEB-INF or you can see it
in the path in the Figure.

Figure 34

you will find that FindAgreement is of type view, and when the request succeded ,
you will be forwarded to the view whose value is : FindAgreement.

 35

2) Still inside the controller, go down at the end of the file, and look for the view-
map whose name is “FindAgreement” .

Figure 35

Now we would see that the FindAgreement view and is located in the
AgreementScreens.xml file, in the #FindAgreement screen.

Note :

The screen files, for example AgreementScreens.xml file, contain many screens
inside it. So to determine which screen is the one to be rendered , it is stated in the
controller after the symbol ‘#’ . Thus, in our case we know it is the screen
FindAgreement inside the AgreementScreens.xml

 36

3) We would follow the path of the screen , provided in the controller, again the
path appears in the header of each Figure.

Figure 36

Notice that the FindAgreement screen uses the “main-decorator”, so all together
form the page. Thus we will take each part in the page. To know more about the
main-decorator, you could refer to the HelloWorld tutorials in here .

 37

http://opensourcestrategies.com/ofbiz/tutorials.php

Now here is the FindAgreement page :

Figure 37

The page is divided into many parts :

This is the application bar, and it contains all the OFBiz applications, the first one
is the accounting application.

Figure 38

 38

This is the name of the Manager Application. This comes from the
appheader.ftl file

Figure 39

Figure 40

 39

Note that it uses the uiLabelMap.AccountingManagerApplication, i.e., it is reading
the name “Accounting Manager Application” from the uiLabelMap. This is located
in the config directory : C:\ofbiz\applications\accounting\config

Figure 41

 40

Figure 42

Note that this is needed because different languages would use different user
interface, so this would also be found in French, German, ..etc .

This is also from the appheader.ftl file.

 41

Figure 43

After that , the rest of the page is coming from the <widget> section of the
FindAgreement screen.

Figure 44

 42

This text “Agreements” is coming from the <container> tag, the
uiLabelMap.AccountignAgreements provide us with the word “Agreement” with
different languages.

The [Create Agreement] comes from the container that has a link to the
EditAgreement page.

Figure 45

This part comes from the included form, FindAgreements :

Figure 46

while :

This part comes from the included form : ListAgreements:

Figure 47

 43

Now we would have a look at the Forms , that are located in the directory :

C:\ofbiz\applications\accounting\webapp\accounting\agreement
\AgreementForms.xml

Here is the FindAgreements form :

Figure 48

Notice that a lot of tags are used, for the time being, you need just to know the
most important ones that serve your application.

Figure 49

Shows to which page is the next target after serving the form.

 44

Figure 50

This tag will by default,read all the fields of the Agreement entity, and display
them in the same format based on the default-field-type , unless the field is
explicitly specified to have a different feature as we would see.
Note that the “find” field type is the default, and it is among four different field
types , find , edit, display and hidden, try changing the “find” to any of those and
see what changes would occur, don’t worry it is an open source project!

Here is the Agreement Entity and its fields :

Figure 51

Unless a field is explicitly specified, all the field will appear with a “find” filed
type.

Figure 52

Here is the productId field , it is explicelty specified to be labeled with the label
AccountingProductId . You could also just write the name like title=”Product Id”
.However they would use to read from the config files, to support different
lganuage as mentioned earlier.
It also uses another defined tag called lookup , to allows to see the product
information to choose among them.

 45

Figure 53

The agreementTypeId field of the agreement entity is explicitly defined to have a
label , using the title=”…”
Also, it is to be shows as a drop-down menu .
The <drop-down> has an attribute called allow-empty = “true” which means it can
be empty, else if “false” then it has to have one of the types.

<entity-options> tells that the filed “agreementTypeId” will have the values from
the AgreementType entity , and it will match it with the field “agreementTypeId of
the AgrementType entity.
What will be shown to the users is the “description” field of the AgreementType
entity that describes a particular agreementTypeId.

Figure 54

This list of fields are specified to be hidden, so clearly they will not appear in the
page with other fileds.

Finally,

Figure 55

The submit button to submit the form .

If you followed the ListAgreement form, you would notice it is similar to the
findAgreement , so I won’t discuss it here .I would discuss now the EditAgreement
page/form.

 46

Edit Agreement :

Figure 56

Again, and exactly as we did with the FindAgreement ,if we want to press on the
[create Agreement] , we would notice a request to control/EditAgreement, and
again, and if we followed the controller it will guide us to the EditAgreement
screen in the AgreementScreens.xml file.

 47

Figure 57

Figure 57 shows the Edit Agreement screen , again similar to the FindAgreement
screen.

It is also including the EditAgreement form, so whenever a request to this page is
rendered, the form will be included in the page.

 48

Here is the EditAgreement form :

Figure 58

Figure 59

It says that its next target should be updateAgreement, but what is
updateAgreement? Where is it ? the Controller would “always” answer .

But it also says :

Figure 60

 49

It is clear now that if the agreement we are dealing with is “new” ,i.e., =null , so
our target will be “createAgreement” , else our target is “updateAgreement” .

The rest of this form is a normal declaration for the fileds , as we saw earlier in the
FindAgreement form.

Let us now follow the createAgreement and the updateAgreement.

1)Assume we are creating a new agreement, that is we pressed on the button
 [create Agreement] in Figure 56 , and started entering the fields of the
EditAgrement .
Thus, it will it find that the condition “agremment == null” returns true .

So, the request goes to the controller , for createAgreement.

Figure 61

 We found the createAgreement , but it is of type service! “Not a view”.

 50

and it invokes a service called createAgreement , and on success , i.e., if we didn’t
have any errors or problems, it would be redirected to the EditAgreement page.

Figure 62

Now , and by default, the controller will try to search for the createAgreement
service , in the servicedef directory. It will then find the definition for this service”
createAgreement” in the service_agreement.xml file .

Figure 63

Here it is clear, the createAgreement service will be requested It will be servicing
the Agreement entity as mentioned in the default-entity-name .
It is of type simple, it will invoke a simple method called createAgreement, and its
location is provided.

 51

The <auto-attributes> will govern the mode and existence of the non-pk and pk
attributes of the entity Agreement.

You can follow the again refer to the service engine document on the OFBiz
website.

Then we would follow the path , to see the implementation of the createAgreement
simple method.

And finally here is the createAgreement service implemented with the OFBiz mini-
language.

Figure 64

 52

Figure 65

As shown,
Make-value means we want to create a new row in the databaseof type
“Agreement”. Parameters “fields” are sent/sent/get using Maps. So, now our map
that will contain the fields of the new created entity is called . “newEntity” .

 This “newEntity” map is taking the values of all the non-pk from another map
called “parameters” .The parameters map holds the values/parameters of the form,
“i.e., from the parameters entered by the user in the form “.

Figure 66

Here is is creating the sequence for the agreementId field which is the primary key
of the Agreement entity, then it is filling the agreementId in the “newEntity” map.

Figure 67

The filed fromDate should not be null “you do not expect an agreement not to have
the date taken” . Thus, if the user didn’t fill it, it will be filled with the current time
value, using the “nowTimesamp” env-name .

 53

Figure 68

And finally, the new row is created in the database.

Here is the createAgreement :

Figure 69

 54

And here after submitting the button “note that we saw that button in at the end of
the “EditAgreement” form.

Figure 70

Note the control/createAgreement request , because the agreement== null was true,
since the user hasn’t created the agreement yet.

Now, and after we have created a new row in the database , in the table Agreement
, whose ID is 10050 . Now a click on the submit button, will check and find that
agreement == null is not a true anymore, since the agreement will read the values
of the fields from the “parameters” map . Thus it will request the
control/updateAgreement .Again the cycle will be reapted :
controller > updateAgreement is a service> looks for it in the servicedef > finds out
its type and location > looks for its implementation > perform the service >data
stored in the database > gets back to the page as shown below.

 55

Figure 71

Notice that : these

Figure 72

were not there in the createAgreement Figure,Figure 69, so they must be attached
to a particular Agreement , in other words, there should be an agreement , for them
to appear.

 56

So we would chech the AgreementScreen again, we would find it is using main-
decorator pattern,

Figure 73

and having a look into the main-decorator pattern , we would see it is including an
ftl file called AgreementTabBar.ftl .

Figure 74

and inside the AgreementTabBar.ftl file :

 57

Figure 75

It is clear that these would appear only when there is an agreement because it is
checking if the agremment has content ,i.e., it is not null, and it shows them” the
button we have seen” only when this condition satisfies.
As for the ID : 10050 That had a green circle in Figure 72 , it also came from the
commonAgreementDecorator :

Figure 76

 58

Finally , we would see this Agreement in our list.

Figure 77

 59

Summary :

 OFBiz uses the three-tiers architecture in its model and a controller “main-
servlet” to control and forward the requests to the application, whether this
request is for a particular service or page. For building any application you
need to build up these layers.

1) Data layer : represents the database, your stored data.

Design your database tables
Build the data layer in the entitydef folder:

 entitygroup.xml file to define the tables name.
 entitymodel.xml to implement the defined tables, their pk’s,
 field types and relationships.

2) Business Logic Layer: represents what services applied on the database.

 Decide what services you need.
 Build this layer:
 servicedef folder : define all the services ,their types, the methods they
 invoke, their inputs and ouputs..etc.
 Implement the services:
 script folder : if the service can be implemented with xml.
 src folder : if the service to be implemented with java.

3) Presentation layer : display pages “user-interface”

 Decide what pages you want, what do you want to display to the user.
 Build this layer:
 widget folder : contains the screens that represent the application pages.
 webapp/”appfolder” folder : contains the forms that might be included
 in some screens.

4) Controller :

 It contains all the URLs related to the application, it receives the

 requests and forwards the requests to their location. It also defines the types
 of the requests, the handlers for the different events,…etc.

 contains the path for all the screens.

 Located in : webapp/WEB-INF/ controller.xml .
 When ever you add any new service or screen, you need to include it

 in the controller.

 60

[1] Taken from http://opensourcestrategies.com/ofbiz
[1]* Taken by word from http://opensourcestrategies.com/ofbiz

THE END

 61

http://opensourcestrategies.com/ofbiz
http://opensourcestrategies.com/ofbiz

